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PART I: INTRODUCTION

TO EUCLIDEAN FIELD THEORY



I.1 The ultraviolet problem

Quantum field theory is an attempt to describe the properties of elementary
“point-like” particles in terms of relativistic quantum fields. It is now widely
believed to offer a coherent mathematical framework for relativistic models (like
the “standard U(1) x SU(2) x SU(3) model”). These models include all the
particles and interactions observed up to now except gravity. Therefore, together
with general relativity, field theory is the backbone of our current understanding of
the physical world. In the future a new, more unifying framework may be adopted,
like the currently promising superstring theory, which is a relativistic and quantum
modelization of extended one dimensional objects instead of point-like particles;
nevertheless even in this case it is extremely likely that field theory will remain
important in many situations, just as classical mechanics is still today.

This situation is relatively recent. Until the 70’s the very statement that
quantum field theory might provide a coherent mathematical framework at all
was not widely accepted. The main doubts on the mathematical consistency of
quantum field theory were due to the persistence of ultraviolet problems (and to
the lack of successful models for strong interactions: QCD, the present field theory
of strong interactions, did not exist). Let us sketch what these ultraviolet problems
are and why they are important.

An ultraviolet problem is one which is due to the existence of arbitrarily
small length scales, or equivalently of arbitrarily large frequencies in the Fourier
analysis of a theory. Such problems are inherent to the formalism of quantum
field theory, because it is a crucial assumption that the fields live on a continuous
space time. One might wonder whether this continuity condition has anything to
do with physics and whether the whole problem is not a mathematical artefact.
After all it is reasonable to expect that space time will conserve its smoothness
only until the Planck scale, where quantum aspects of gravitation might distort it
significantly. This Planck scale might provide a physical ultraviolet cutoff; this is
what seems to occur in superstring theories where it is conjectured that at least
in perturbation, there are no ultraviolet divergences. However the Planck scale
is much higher than the typical scales that field theory tries to describe, and is
completely inaccessible to direct experiments.

In fact the most compelling reason for which we are interested in the con-
tinuous formulation of field theory is the same for which we are interested in the
thermodynamic limit of statistical systems. In statistical mechanics this limit
corresponds to systems of infinite volume. We know that in nature macroscopic
systems are in fact finite, not infinite, but they are huge with respect to the atomic
scale. The thermodynamic limit is an adequate simplification in this case, since it
allows to give a precise mathematical content to the physically relevant questions
(like dependence of the limit on boundary conditions, existence of phase transi-
tions etc...). Since a limit has been taken, the power of classical analysis may be
applied to these questions. It would be much harder and less natural to try to
define the analogous notions for a large finite system, just as it is difficult and
often inappropriate to make discrete approximations to some typically continuous
mathematics like topology.

From this point of view the ultraviolet problem appears central and inescapable



in field theory; a limit has to be performed, whose existence is critical for interest
in the corresponding mathematical formalism.

Historically quantum field theory was plagued by two successive ultraviolet
"diseases” which raised doubts on the existence or consistency of the ultraviolet
limit. In both cases the situation looked bad for many years until a way out of the
crisis was found. The first and most famous ultraviolet disease has been recognized
almost since the birth of quantum field theory. It is the occurence of divergences
due to the integration over high momenta in the loops of Feynman integrals. In
the ¢} theory which will be discussed soon, one of the simplest of these divergences
is the divergence of the second order graph which we call the “bubble” (see Fig.
[.1.1). By momentum conservation the amplitude for this graph is only a function
of k = ki + k2. In Euclidean space, this amplitude (apart from combinatoric
coefficients discussed later) is given by the integral:

[
(p* +m?)[(p + k)* + m?]

(L1.1)

which diverges logarithmically for large values of p. (Similar divergences occur of
course in the more physical theory of quantum electrodynamics).

Around 1950, this disease was cured by the invention of perturbative renor-
malization by Feynman Schwinger, Tomonaga, Dyson and others (see e.g. [Dyl]).
Basically it amounts to a redefinition of the physically observable parameters of
the theory which pushes the infinities into unobservable “bare” parameters. It
took more than a decade to put this perturbative theory of renormalization on
a completely firm mathematical basis. Roughly speaking, the main result states
that theories which are renormalizable from the naive power counting point of
view can indeed be renormalized without changing the formal structure of the La-
grangian. More precisely one can replace the bare parameters of the Lagrangian
by formal power series in the renormalized parameters (usually the coupling con-
stant), so that the resulting perturbative expansion in the renormalized coupling
is finite to all orders, as a formal power series. We call this important theorem
the BPH theorem (Bogoliubov- Parasiuk-Hepp [BP][Hel]) although as usually it
incorporates a lot of former work and was followed by important extensions and
refinements. It was somehow a surprise to discover that this theorem, developped
for quantum electrodynamics or the ¢} model, remained also true for non abelian
gauge theories [tH1|[LZ], in which case it is highly non trivial to check that the
counterterms required do not break gauge invariance, i. e. can be absorbed in a
redefinition of the field strength and of the coupling constant. By power counting
analysis alone, this would not be true: one has to incorporate additional infor-
mation coming from Slavnov identities or BRS invariance [Tay][Sla][BRS]. The
traditional proof (see [IZ]) relies on a dimensional regularization in which gauge
invariance is maintained, but this approach has some drawbacks: the dimensional
regularization is complicated and cannot be used up to now in a constructive (non
perturbative) program.

But quantum electrodynamics, the only firmly established field theory has
been plagued by another ultraviolet problem, raised in particular by L. Landau
and other physicists of the russian school. We call it the “renormalon” problem,
although this name was introduced much later. It does not occur any more at
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the level of individual Feynman graphs, but it affects the perturbative series as
a whole. In ¢} (which is similar to electrodynamics in this respect), there are
several ways to discover the problem. One of them is to consider the leading-
log behavior of the renormalized 4 point function at n-th order, S*# and large
external momenta. Let m be the mass of the particles. One finds (in Euclidean
space):

Sy (k) —oo g0z log(k/m)]" " (L1.2)

where gp is the renormalized coupling constant and (5 is a numerical coefficient
(for single component ¢} it is 9/272 or 3/1672 if one writes, as usual, the inter-
action as ¢*/4!). Various ways of playing with formula (I.1.2) give rise to various
troubles, all related. When the 4 point function is inserted into a convergent loop
like the triangular 6-point graph of Fig. 1.1.2, at 0 external momenta, one obtains
contributions to the n-th order of perturbation theory for the 6 point function
proportional to

n d*k . o
I /|k|2m m[52 log(k/m)] = (n —3)lg" By 3 (I.1.3)

These contributions are not summable over n (since they add up with the same sign
they are also not Borel summable). Therefore the renormalon problem appears as
a difficulty to sum up perturbation theory. However one might also consider the
asymptotic behavior in k of the bare (unrenormalized) 4-point function:

Sy (0) koo (—g)"[B2 log(k/m)]" ™! (L1.4)

where gp is the bare coupling constant. Since in the theory of perturbative renor-
malization this function should be the counterterm of the theory, i.e. the difference
between the renormalized coupling gr and the bare coupling gp, one gets the for-

mula:
— _ - _ n n—1 __ JdB
Jgr = 9B ngzz( gB)" B2 log(k/m) = 15 gt loa(k/m) (I.1.5)

Therefore if gg > 0, limg_oo gr = 0 (no matter how gp is chosen as a function of
k). This is the phenomenon of “charge screening” called also the triviality problem
for ¢} or QED. In the ultraviolet limit, only the trivial noninteracting theory seems
to exist. Still another possibility is to invert formula (I.1.5) to obtain

~ IR
1 —ggrBelog(k/m)

g9B(k) (I1.1.6)

Keeping ggr fixed, gp becomes negative at an energy of order me+m, therefore
the theory should become unstable or inconsistent at this “Landau” energy scale.
The singularity in (I.1.6) is sometimes called a Landau ghost. But of course
one should not really trust (I.1.6). One should rather remark that as k& — oo,
gp increases and becomes of order unity around the Landau energy, after which
perturbation theory itself and in particular (I.1.2)-(I1.1.6) should no more be valid.
The behavior of gp is turned into a strong coupling problem, intractable up to
now, except perhaps by Monte Carlo simulations.



Let us summarize the characteristic features of the renormalon problem. As
remarked already, it affects the summability of perturbation theory as a whole
(therefore physicists might call it a non-perturbative problem, although we would
prefer to consider it as a “strong coupling” problem). It is truly an ultraviolet
disease, because it does not occur in the theory with fixed ultraviolet cutoff, no
matter how large. It is easy for instance to check that the n! behavior of (I.1.3)
does neither appear in the bare nor in the renormalized perturbative series with
fixed ultraviolet cutoff. Finally the name “renormalon problem” although perhaps
awkward, is justified because the disease arises from the introduction of coun-
terterms, hence from the use of perturbative renormalization. As will indeeed be
discussed at length in this book, the perturbative theory of renormalization cures
the first problem of infinities too well. It introduces both some pieces of coun-
terterms which we call “useful” because they make the renormalized Feynman
amplitudes finite, but also some pieces of counterterms which we call “useless”.
These useless counterterms do not cure any divergence. Furthermore they are the
ones which are responsible for the renormalon problem!

To observe the distinction between useful and useless counterterms, one needs
some detailed Fouriere analysis such as the one provided by phase space decompo-
sition. Then it appears that the sole reason for introducing uselesss counterterms
is the locality requirements and the insistence upon writing the renormalized series
is written in terms of fixed renormalized constants which do not depend on the
energy scale. In this book we will argue that one should drop this restriction, and
adopt a more effective perturbation theory with an infinite number of scale de-
pendent “effective constants”. In this way we rediscover that the renormalization
group point of view is the right way to investigate the renormalon problem.

Historically the renormalon disease and its investigation by the invention of
the renormalization group was not discussed exactly in these terms; the emphasis
was on the invariance of the theory under changes of the (arbitrary) subtraction
scale (this invariance lead to the very name “renormalization group”) and on high
energy asymptotic behavior, not on n! behavior at large order and the problem of
summing up perturbation theory. Of course both points of view are closely related.
Anyway the problem was serious enough to raise again doubts on the ability of
quantum field theory to be consistent through the 60’s.

As a reaction the constructive program was launched, and in the early 70’s
a major milestone was reached when superrenormalizable theories of various type
were built and checked to be free of inconsistencies. Reviews or books on this
first period of constructive theory are [Erl][Sil][GJ2]. Although the results and
techniques used have proved very influential in many areas of physics and math-
ematics, this success was nevertheless not of specific relevance to the renormalon
problem. For theoretical physicists, a convincing way to escape this problem was
really found with the major discovery of asymptotic freedom in nonabelian gauge
theories [Po][GW]. This occurred just at the right time to complete the spectacular
rebirth of quantum field theory: non abelian gauge theories had been developped
as realistic models for the electroweak interaction and had been shown to be per-
turbatively renormalizable. It gave in turn a major impetus to adopt them to
describe strong interactions as well.

Asymptotic freedom occurs when the coefficient o in (I.1.2) is negative. As



a result equations (I.1.5)-(I.1.6) are inverted. It is now the bare charge which is
screened. At large energies the particles behave like free point-like objects (hence
the name of asymptotic freedom). Looking at (I.1.3) and changing the sign of
(2 we see that the renormalon problem still prevents “ordinary” summation, but
the corresponding contributions now become alternate; therefore an other type of
summability, like Borel summability, becomes possible.

The discovery of asymptotic freeedom in non-abelian gauge theories convinced
the theoretical physics community that these quantum field theories are indeed
mathematically consistent. Many physicists believe that there is no longer any
surprises to arise on the ultraviolet problem for gauge theories (see however ["tH4]
for an exception). But this belief has yet to be better substantiated by a non
perturbative, mathematically rigorous analysis.

To understand rigorously the concept of asymptotic freedom beyond perturba-
tion theory, one way is to construct first some consistent models of renormalizable
theories with such a behavior. There exist models of this kind simpler than the
non abelian gauge theories in 4 dimensions, namely fermionic models in two di-
mensions with many components and a quartic interaction [MW] [GrNe|. Also the
¢$ model, although not asymptotically free in the ultraviolet direction, is asymp-
totically free in the infrared direction. Although the corresponding constructive
problem is a problem of statistical mechanics rather than field theory (the ultravi-
olet cutoff is not removed), it is very similar in mathematical structure. This road
has been followed by K. Gawedzki and A. Kupiainen [GK2-3-4] and by J. Feldman,
J. Magnen, R. Sénéor and the author [FMRS3-4-5], who, with somewhat different
technical tools, succeeded in building these models. In fact it is the main goal of
this book to present in a more systematic and accessible form than the original
papers the technique of multiscale or phase space expansion, as developped and
applied in our collaboration with J. Feldman, J. Magnen and R. Sénéor. This
technique originated in the constructive work of Glimm and Jaffe [GJ1].

To extend our rigorous understanding of asymptotic freedom to non abelian
gauge theories in a finite volume is the next natural challenge. (The large volume
problem is indeed a different one, where one has to deal with a strong coupling
problem and physical issues like quark confinement which seem still much farther
from a rigorous analysis). This ultraviolet consistency of non-abelian gauge the-
ories on compact manifolds is not only a key issue in theoretical physics, but is
also becoming one in geometry, in particular since E. Witten related Donaldson’s
invariants to (still formal) functional integrals of some (supersymmetric) Yang-
Mills theory [Wit]. Various versions of Yang-Mills theories now seem to be the
link between the most fascinating problems of geometry (homotopy and knots in
three dimensions, symplectic geometry and conformal theories in two dimensions
and differential geometry in four dimensions). A constructive understanding of
the corresponding functional integrals would be therefore a major progress in pure
mathematics.

The problem has been attacked first by T. Balaban [Ba2-9]. In a very impres-
sive sequence of papers, completed recently, he establishes an ultraviolet stability
bound for the effective action of a lattice gauge theory after iterating a large
number of clever block-spin transformations. From this result it is expected that
the continuum limit of gauge invariant observables like Wilson loops can be con-
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structed. Hence at least these observables should be free from inconsistencies and
this is a very important result. This work is now followed by a related program of
P. Federbush [Fe2-7][FedW], still in progress, which uses also a lattice regulariza-
tion and phase space cells.

But even after completion of these works, many questions remain in particular
because the expectation values of the fields of the theory (in a particular gauge)
are not built in the lattice-based approach. It is important to know whether such
expectation values, which are not gauge invariant, can also be built or, if they
cannot, to understand better why. The main difficulty for this other program lies
in a lack of positivity of the gauge-fixed functional integrals, related to the Gribov
problem [Gri|. Progress in understanding this difficult problem has been slow up
to now, but interesting as well as surprising results may lie ahead [Zw1-3][DeZw].

After this quick historic overview of the ultraviolet problem in field theory,
let us describe the structure of this book.

The first part is devoted to some introductory material on field theory, on the
#»* model which is the training ground for most of the book, and on perturbation
theory and Feynman graphs. We keep this part very brief; although we try to be
reasonably self-contained, we assume indeed some familiarity of the reader with
quantum field theory, for instance with [IZ].

Then in the second part we apply the idea of “phase space chopping” to
the study of perturbation theory, focusing on renormalization and using the ¢}
model for simplicity. We derive a uniform BPH theorem which adds reasonable
estimates to the finiteness content of the original BPH theorem; the first theorem
of this kind appeared in [dCR1]. Then we show that the analysis of the bounds
obtained leads naturally to reshuffle the bare or renormalized perturbation theory
into a better form, the effective perturbation theory. In the case of simplified
asymptotically free models for which the number of graphs at ordre n is not too
large, like the wrong sign planar ¢3 model ['tH5-7], [Ril], this reshuffling is even
sufficient to construct the model. This part is closed by a discussion of the large
order behavior of perturbation theory, a problem truly at the border between
perturbative and constructive techniques.

In the third part, devoted to constructive theory, we start with an introduction
to the key techniques of cluster and Mayer expansion; these techniques extend in
a natural way to phase space under the name of “multiscale expansions”. Then
we describe how to apply them first to the infrared limit of critical ¢}, for which
we show how positivity of the interaction can be used to handle the so called
“domination” or large field problem, and then to the construction of the “Gross
Neveu” model in two dimensions, wich is a genuine renormalizable field theory. The
construction of the non renormalizable Gross-Neveu model in three dimensions,
which requires interesting additional techniques, is also sketched.

We conclude with a description of a tentative approach to the problem con-
sidered above, namely the construction of the continuum limit for the gauge-fixed
non-abelian gauge theories Y My in a finite (small) volume. We restrict for sim-
plicity to the pure SU(2) theory. We want to construct the continuum limit of
the gauge fixed theory in a regular gauge, because this theory has a regular prop-
agator which is compatible with phase space chopping. Although the phase space
chopping does not respect gauge invariance, it should nevertheless be possible to
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recover gauge invariance in the limit, at least in the form of Slavnov identities
which express invariance under gauge transformations continuously connected to
the identity. This is because only the relevant or marginal effects of gauge break-
ing cutoffs matter for the final theory, and these effects can be compensated by
means of a finite number of appropriate non gauge invariant counterterms. There
are some stability requirements for these counterterms, which as we show can be
met. This approach has lead only to modest results up to now, but at least as a
by-product it gives a control of perturbative renormalization of non-abelian gauge
theories with reasonable bounds, which avoids the traditional use of dimensional
regularization, which is not adapted to constructive purposes.

The difficulties that we met in our program may indicate that the ultraviolet
behavior of the non-abelian gauge theories, at least at the level of the vacuum
expectation values in a regular gauge, is not the one expected from the perturbative
renormalization group predictions, as is advocated in [DeZw]. This important
point clearly calls for a rigorous clarification.

To conclude, let us apologize sincerely to the many experts in all these areas
whose work is not properly cited or accounted for in this book. Neither on per-
turbative nor on constructive theory, neither at the level of the subjects treated
nor at the level of the references does this book intends to be an extensive or
even fair review. The main reason is that we do not feel able to report properly
on something else than the particular techniques and point of view that we have
personally used, which we know may not be always the most elegant or the most
powerful ones. As a result, this book may be considered more as a “guided tour”
of the author’s favourite subjects than as an exhaustive review on perturbative or
constructive field theory.

Nevertheless we want to mention at this stage that concerning the part of this
book on perturbative renormalization, an other elegant formalism using phase
space choppping was developped in parallel to ours by Gallavotti and Nicold,
and later by Feldman, Hurd, Rosen and Wright. This formalism is very closely
related to the one presented here, the main difference being that it avoids the
use of Feynman graphs, making in a sense the combinatoric of cancellations more
transparent. Here we stick to the point of view of Feynman graphs, which we think
are presumably familiar to the potential reader, and refer for this other approach
to [Gal][GaNi|[FHRW].

Concerning the third part of this book, we mentioned already that a renor-
malization group solution to many of the same problems was worked out simulta-
neously by K. Gawedzki and A. Kupiainen [GK2-4], using the formalism of block
spin transformations. These beautiful works and many others related will not be
described at all, again for lack of competence but not of interest!

A last word is in order on the mathematical level of rigor. We intend to
describe only rigorous results, but we do not provide always complete proofs of all
the statements. Also we prefer always the particular to the general, for pedagogical
reasons. We try to convey better the underlying ideas by phrasing as much as
possible our arguments in ordinary words rather than in fully formalized equations.
We know that this is dangerous and that the ratio of equations to words in scientific
papers has been sometimes compared to that of signal to noise. In any case we did
honestly our best to mention all the difficulties, even when they are apparently
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purely technical. In conclusion we hope that this book can be useful, in particular
to the beginner, by explaining the natural link between perturbation theory, which
is conceptually simpler, and constructive field theory, which had for too long the
reputation of being a much harder subject.
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I.2 Euclidean field theory. The O. S. axioms

From the classical work of the founding fathers of axiomatic field theory, we
learn that the minimal mathematical requirements or axioms for a field theory
are conveniently expressed in terms of the vacuum expectation values of products
of the field operators, the “Wightman functions” [SW]. From these quantities
one could also, at least in principle, compute more physical quantities like the S
matrix. We could start directly from the Wightman axioms or their Euclidean
counterpart, the Osterwalder-Schrader axioms, but we prefer to motivate them
first with a brief sketch of their relation to the S matrix formalism, without any
attempt to mathematical rigor. For this sketch, we follow [dC]; for a more complete
study on general aspects of quantum field theory, we refer to [BS],[BD] and [IZ].

In ordinary (Minkowski) quantum field theory, the fields are technically “op-
erator valued distributions”, i.e. they take their values in some set of operators
on the Hilbert space of physical states, H. The main physical properties that are
required for field theory are relativistic covariance and microcausality. Therefore
H should bear a unitary representation of the Poincaré group, for which the only
invariant state is the vacuum. The generators of the Poincaré group, the mo-
mentum operators P should have positive norm: P2 > 0. And since signals do
not propagate faster than light, operators which are smeared with test functions
whose supports are “space like” separated should commute (or anticommute for
fermions).

Since field theory is a second quantized formalism, the Hilbert space is a Fock
space:

H =02 ,H, (1.2.1)

Hy, of dimension 1, is generated by a particular vector g, called the vacuum. Hy
is the space of 1-particle states, and H,, the space of n-particle states, is the n-th
tensor product of Hy, symetrized for bosons and antisymetrized for fermions. For
instance for free massive scalar bosons, H; is generated by a complete orthonormal
set f; of positive energy solutions of the Klein-Gordon equation:

(0,0" +m?)f =0 (1.2.2)

The scalar product in this case is
bij =< fi, fj >= i/d?’xfi*éofj = /d,upfi*fj (1.2.3)

where f; = fd,upfi(p)e_ip'x; dpy, 1s the Lorentz invariant measure:

d*p d*p 2 2
du, = = 2mo(p” — 0 [.2.4
Hp (271')32]?0 (271')4 ™ (p m ) (po) ( )

and we use the convention udyv = u(9pv) — (Jpu)v. The free scalar bosonic field
¢ also satisfies the Klein Gordon equation (I.2.2), which derives from the free
Lagrangian:

Lo(6) = 3 (0,096 — m*6?] (125)
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and it can be developped into creation and annihilation operators which satisfy
canonical commutation relations:

b(x) = / dua(p)e= P + a* (p)eP] (1.2.6)

[a(p), a(p)] = [a(p),a™(»)] = 0; [a(p),at ()] = 2po(27)365(5 — ") (L2.7)

The action of the field on the Hilbert space is then best described by smearing
these operators with solutions f of the Klein-Gordon equation. We can define

o = [ fwaw). af = [ dupfo)a* v) (12.5)

The vacuum is then annihilated by any annihilation operator as, and a generating
set for the full Hilbert space H is obtained by the action of a finite number of
creation operators a;{ on the vacuum (which is therefore called a cyclic vector).
The action of ay and a}' is then determined by the commutation relations coming
from (1.2.7):

ag.ap) = laf.af) = 0 lap.af) =< £, > (1.2.9)

To solve the Klein-Gordon equation one can introduce Green’s functions (ad-
vanced, retarded or the symmetric one called Feynman’s propagator), and the
vacuum expectation value of a time ordered product of field operators (or gener-
alized, N-point Green’s functions) is given by a sum over pairings of these fields
of the corresponding product of propagators. Such pairings are called Wick con-
tractions. The result is called Wick’s theorem. We will find this rule again in the
context of gaussian integration.

The theory of the free field is therefore completely explicit. But we are in
fact in search of an interacting quantum field theory. We look for field theories
which admit a simple Lagrangian, polynomial in the fields and their derivatives.
For scalar fields this Lagrangian will be decomposed into the free piece Lj given
by (I.2.5) and a higher order polynomial L; which is the interaction. Let us use
® for the interacting field, to distinguish it from the free field ¢. For instance in
the ®" theory the interaction is g®" and the corresponding field equation is a non
linear generalization of the Klein-Gordon equation:

(0,0" + m*)® = ngd" ! (I.2.10)

The traditional approach to a collision process is to start from a system of free
particles at time —oo and to end up also with a system of free particles at time
+00. The corresponding asymptotic spaces H;, and H,,; should be therefore
isomorphic to H and the collision process should be represented by a unitary
matrix called the S matrix mapping H;,, to H,,:. Cross sections are then obtained
directly from the matrix elements of S in a suitable basis. Unitarity of S is
necessary so that probabilities of outgoing states add up to 1, no matter what the
incoming state is. One requires also invariance of S under the Poincaré group, and
stability of the vacuum (which should therefore be also invariant by S). However
many mathematical problems arise with this approach. First (1.2.10) contains a
multipication of distributions, which is generally an ill-defined operation. Secondly,
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solutions of the non-linear equation (I.2.10) cannot be asymptotic to free fields
hence to solutions of the linear one, except in a certain weak sense. The result
of [LSZ] is that under such a suitable asymptotic condition, there are “reduction
formulae” which express the matrix elements of S in terms of the Green’s functions
Gy (or time ordered vacuum expectation values) of the interpolating (interacting)
field ®:

GN(z1y ey 2N) =< U0, T(P(21), oy P(2n) 0o > . (I.2.11)

The Gell-Mann-Low formula gives in turn these functions as vacuum expectation
values of a similar product of free fields with e?*¢ inserted:

< o, T|6(21), oy dlzn)el ] L @ED |y
GN(z1, .y 2N) = ' (L2.12)
< o, T(el S EL@EN Yy

This formula is difficult to justify because the usual argument, based on the so
called “interaction picture” is wrong: by a theorem of Haag, there is no way
to relate the free field ¢ to the interacting one ® by a unitary operator [SW].
Nevertheless the Gell-Mann-Low formula can be rigorously justified at least at the
level of perturbation theory (in the sense of formal power series in the coupling ¢
appearing in front of L;). Branching the coupling in an adiabatic way one finds
(I.2.12) up to renormalization ambiguities, which mean that a certain finite part
has to be taken in (1.2.12) [EG].

In the functional integral formalism proposed by Feynman [FH], the Gell-
Mann-Low formula is itself replaced by a functional integral in terms of an (ill-
defined) “integral over histories” which is formally the product of Lebesgue mea-
sures over all space time. It is interesting to notice that the integrand appearing in
this formalism contains the full Lagrangian L. = Ly + L;, not only the interacting
one. The corresponding formula is the Feynman Kac formula:

11 ¢(Zj)eifL(¢(x))de¢
J

G (21 2y) == 1.2.13
N CTRRE) feifL(¢(x))de¢ ( )

The functional integral has potentially many advantages. First it relates Wick
theorem to the rules of gaussian integration, and makes therefore perturbation
theory very transparent. The fact that the full Lagrangian appears in (1.2.13)
is interesting when symmetries of the theory are present which are not separate
symmetries of the free and interacting Lagrangians, as is the case for non-abelian
gauge theories. It is also well adapted to constrained quantization, and to the
study of non-perturbative effects. But for a long time nobody knew whether some
day some rigorous meaning could be attached to it.

In fact the difficulty of making rigorous sense out of either the Gell-Mann-Low
or the Feynman-Kac formula lead to the investigation of what minimal properties
should be expected from the Green’s functions of a field theory, no matter from
which Lagrangian or formula they may come from. Several axiomatic schemes
were developped. The time ordered Green’s functions can also be computed from
ordinary (not time ordered) vacuum expectation values of products of the fields op-
erators, called Wightman functions. It is for these functions that the most popular
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axiomatic scheme, the Wightman axioms was formulated. It includes a regularity
assumption (temperedness), a relativistic transformation law, spectral conditions,
hermiticity, local commutativity, a positiveness condition and a cluster property.
The “Wightman reconstruction theorem” [Wigl| ensures that from such properties
one can reconstruct in a unique way a Hilbert space with a unitary representation
of the Poincaré group, positive spectrum condition for the momentum operators,
the correct properties for the domain, regularity and transformation law under
Poincaré of the field operators, local commutativity (or microscopic causality) and
uniqueness and cyclicity of the vacuum. This Hilbert space formulation is called
the Garding-Wightman axiomatic scheme. But in absence of interacting mod-
els, all these axioms could be checked only for free fields. In the late sixties, the
constructive program was launched in order to provide at least some non trivial
models for these axioms, and the simplest thing to do was to return to Lagrangians
and to formulas (1.2.12) or (1.2.13).

There is a deep analogy between the Feynman Kac formula and the formula
which expresses correlation functions in classical statistical mechanics. For in-
stance, the correlation functions for a lattice Ising model are given by

n Z eL(U) H 0-3%
q[ow) =222 (1.2.14)
=1

Z eL(U )
{o=%1}
where the index x runs over the discrete points of the lattice, and L(o) in the
simplest case contains only nearest neighbor interactions and possibly a magnetic
field h:

L(o) = Z Jojo; + Z ho; (I.2.15)

ji—jl=1 i

By analytically continuing (I.2.13) in time to the Euclidean points, it is pos-
sible to complete the analogy with (I1.2.14), hence to establish a firm contact with
statistical mechanics. This idea also allows to give a rigorous meaning to the Eu-
clidean path integral, at least for a free bosonic field. Indeed the corresponding

Euclidean measure Z " 'e™ J LO(M)ded), where 7 is a normalization factor, can be
defined easily as a gaussian measure on the Schwartz space S’ of rapidly decreasing
distributions, using the general theory of such measures and a theorem by Minlos
[Sil]. This is simply because Lg is a quadratic form of positive type.

The Green’s functions continued to Euclidean points are called the Schwinger
functions of the model, and are given by the Euclidean Feynman-Kac formula:

N
SN (21, e 2n) = 271 / [T 60 ] 20 gy ) (1.2.16)
j=1
7= / S I (L.2.17)
This formula is still formal, even in a finite volume; for instance the factor e JRACICH

might be ill-defined since it involves multiplying distributions, or might not de-
crease at large ¢, in the case of an “unstable” potential. However the gain from
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an oscillating factor in (1.2.13) to a real one in (1.2.15), turns out to be enormous
in practice to make sense out of such a formula. When the potential is stabiliz-
ing, we get direct decrease in modulus of the integrand in the functional integral,
something much easier to use than a rapidly oscillating factor.

Euclidean formulation also helps to understand and control the classical limit:
classical solutions are the fields for which the action is stationary. In the classical
limit in Minkowski space, to show that the functional integral is dominated by the
contributions near these classical solutions involves a stationary phase method; but
in Euclidean space it is a steepest descent method, usually a much easier problem
to control.

But Euclidean field theory would not have attracted so much interest, were it
not for theorems which allow to go back from Euclidean to Minkowski space. There
are several axiomatic schemes in Euclidean space which ensure such a recovery of a
Wightman theory and the corresponding theorems are discussed quite extensively
in [Sil]. We restrict us here to a brief survey of the Osterwalder-Schrader (O.S.)
axioms [OS]. These axioms are expressed as properties of the Schwinger functions
Sn, not of the field ¢. Therefore, strictly speaking, they are a kind of “Euclidean
formulation of field theory” rather than “Euclidean field theory”. We will forget
this subtlety. They are an efficient scheme for constructive purposes and in this
book they will be particularly convenient since the Schwinger functions are the
natural objects under study, both in the perturbative and constructive parts.

The O.S. axioms include five properties:

-OS1 A regularity property
-0S2 Euclidean covariance
-0S3 0O.S. positivity

-0S4 Symmetry

-OS5 Cluster property

OS1 is purely technical; for the analytic continuation to Minkowski space to
work one must check that the set of moments Sy does not grow too quickly with
N. This axiom is usually very easy to check in constructive theory.

OS2 simply states that the Schwinger functions are invariant under a global
Euclidean transformation, in the case of a scalar bosonic field. Of course for
theories with spinors, the proper law of transformations of the spinor fields under
the Euclidean group must be taken into account. After analytic continuation, this
property ensures the proper covariance under the Poincaré group.

0OS3 is the most interesting axiom. It states that the expectation value of
a function (like a polynomial) of the fields multiplied by the same function after
reflection on any hyperplane (and complex conjugation) must be positive. This
key property ensures after continuation the locality axiom and positivity of the
Hilbert space in the Wightman axiomatic scheme.

054 is just full symmetry for the Schwinger functions under permutations of
the external arguments, as should be the case for bosons. For fermions, of course,
one should replace this rule by antisymmetry.

OS5 states that the Schwinger functions asymptotically factorize when two
sets of arguments are taken far apart. This ensures the unicity of the vacuum in
the Wightman axioms. In theories where all particles are massive, the clustering
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is exponential with the separation distance. For the two point function, the rate
of decay is called the mass gap.

There are in fact several technical possibilities for OS1, depending on whether
one requires full equivalence with the Wightman’s axioms or simply a reconstruc-
tion theorem OS — W. For a discussion of this and a full mathematical presenta-
tion of these axioms we refer to [OS],[Sil].

The important result is:

Osterwalder Schrader reconstruction theorem
Any set of functions satisfying OS1-OS5 determine a unique Wightman theory
whose Schwinger functions they are.

From now on we forget the Minkowski space and all the background briefly
reviewed above. We always assume that we are in a d dimensional Euclidean space
IRY. Our starting point is the Euclidean Feynman-Kac formula; our goal is to make
rigorous sense out of it, and to check the validity of Osterwalder-Schrader axioms
for the corresponding Schwinger functions.
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1.3 The ¢* Model

The simplest interacting field theory is the theory of a one component scalar
bosonic field ¢ with quartic interaction g¢? (¢ which is simpler looks unstable).
In IRY it is called the gzﬁé model. For d = 1, 2,3 the model is superrenormalizable
and has been built by constructive field theory. For d = 4 it is renormalizable in
perturbation theory. Although a constructive version may not exist [Aiz],[Fro], it
remains a valuable tool at least for a pedagogical introduction to renormalization
theory.

Formally the Schwinger functions of the ¢ are the moments of the measure:

dy — %e—(g/zx!)f¢4—(m2/2)f¢2—(a/2)f(amaw)m (L.3.1)
- ¢ is the coupling constant, usually assumed positive or complex with positive
real part;
- m is the mass; it fixes an energy scale for the theory;
- a is the wave function constant. We often assume it to be 1.
- Z is a normalization factor which makes (I.3.1) a probability measure.

- D¢ is a formal product [[ d¢(x) of Lebesgue measures at every point of
xEIRd

R*.

Remark that the quadratic piece in the exponential of (I.3.1) describes the
free propagation of particles with a positive definite propagator (p? + m?)~! in
Fourier space. This suggests a first improvement of (1.3.1) towards mathematical
respectability. Consider the translation invariant propagator C'(x,y) = C(x — y)

(with slight abuse of notation), whose Fourier transform is

1 1
(2m)4 p2 + m?

C(p) = (I.3.2)

We can use Minlos theorem and the general theory of gaussian processes [Erl][Sil]
to define du(¢) as the gaussian measure on S’(IR%) whose covariance is C. With
this definition, the measure (1.3.1) should be equal to

1

Ze‘(g/‘“)f * Qu(9) (1.3.3)

The Schwinger functions are then given by the still formal expression:

SN (214 ooy ) = % / O(z1)ed(zn)e @D dp(g) (L.3.4)

To progress further towards well defined formulae, we have to introduce ultraviolet
and infrared cutoffs. We will use as infrared cutoff a finite volume box A, usually a
d-dimensional cube with some set of prescribed boundary conditions X. Periodic
(X = p) or Dirichlet (X = D) boundary conditions are the most usual. The
thermodynamic limit A — oo will be obtained through a sequence of such boxes.
In this book the models considered are usually in their “high temperature phase”,
in which case the thermodynamic limit, if it exists, will be independent of the
particular sequence of boxes and of boundary conditions chosen. The propagator
within a box, the corresponding gaussian measure and normalization factors are
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noted Cx a, dux,a, Zx a or simply C, du, Z, depending on context; we try to
forget subscripts or superscripts when it seems harmless.

One of the most convenient ultraviolet cutoff is the “a-space cutoft”. It may
also be called a heat kernel regularization of the propagator, or a regularization of
the proper time of the path in the Wiener representation of the propagator as an
integral over random paths. It suppresses in a smooth way the high frequencies in
(I.3.2). To define it we write the « or parametric representation of the propagator:

A 1 o0

C(p) =

C(z,y) 27T / da/ ip.(z—y)—a(p® +m2)ddp

e~ P +m?) gy (1.3.5)

* do
— —am?®—|z—y|?/(4a)
(47r)d/2 /0 Tk (1.3.6)

(remark that (I1.3.6) is well defined except at coinciding points x = y, where for
d > 2 it is a divergent integral). We suppress the contributions of parameters «
less than x and get:

1 * da —am?—|z— 4o
Ol’i(x7 y) = W /H ad/2€ | y| / (4) (1.3.7)
Jay 1 > 2 2 1 1 2 2
— —a(Pp™+m”) 1o = —r(p~+m’) L.3.
Cﬁ(p) (27_‘_)d/ € o (27T)dp2 +m26 ( 3 8)

When x — 0, one recovers the full propagator. In contrast with (I1.3.6), (I1.3.7)
is well defined everywhere. It is then easy to make rigorous sense of the measure
with both infrared and ultraviolet cutoffs:

1

—(g/4) [, *
Z(X,A,Iﬁ;)e 27 dpx k() (1.3.9)

since for Reg > 0, the exponential is bounded and in L'(dux s ). The sample
fields for this cutoff measure are indeed C'°°, and there is no difficulty to define
the fourth power in (1.3.9) [Erl].

Let us also introduce the lattice regularization and the lattice ¢* model. This
is conceptually the simplest regularization scheme. Continuous space time R¢
is replaced by a discrete lattice grid of spacing &, hence by §Z% We have to
substitute a discrete analogue for the laplacian. We keep in the Lagrangian the
term — Xd:(aiqS)Q(x) but 0; is now the discrete derivative along the unit lattice

i=1
vector e;:

0ip(x) = <[p(x + de;) — p(x)] (1.3.10).

It is a straightforward computation to check that with this choice, the free field
theory on the lattice is again given by a gaussian measure diagtice,s With a prop-
agator:

| =

1 /6 eip~(1'_y)
o / dp 1.3.11
latt (2)d /6 m2 + 262 Zle(l — cos op;) ( )
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With these notations the measure for the lattice qﬁfl theory in a volume A is just:

. ey Y 6@
Z(57 A) ¢ zeAnsze dﬂlattice,6(¢) (1,3,12)

In a finite volume, since there is only a finite number of lattice points, we can even
make sense out of our starting formula (I.3.1). The lattice Laplacean built with
lattice derivatives (I.3.10) involves a diagonal piece plus nearest neighbor terms,
and we can therefore recast (1.3.12) in the form [GaRi]:

1 —(9/41) ) ¢*(@)=(17/2)6" Y ¢*(2)+B Y d(x)¢(y)
E @ z, 1.3.1
76 ° v [[de() (1.3.13)

T

where the sums 3" and the product [] are taken over ANSZ® and Y is performed
T T T,y

over the pairs of nearest neighbors in A N §Z?. Furthermore:
B=0672 and p®=m?>+ 2d6> (1.3.14)

It is now obvious that such an expression can be taken literally. There is only a
finite product of Lebesgue measures in (1.3.13), hence the functional integral is
an ordinary finite dimensional integral. Every sum is finite, and for Re g > 0 this
functional integral is finite, hence normalizable. A main interest of (I.3.13) is that
it exhibits the lattice ¢* theory as a finite system of classical continuous “spins”,
with nearest neighbor interaction, inverse temperature 3 and single spin measure

o~ (9/4)9" —(n?/2)8%¢? do (1.3.15)

There are many techniques of statistical mechanics which apply to such a
system, in particular correlation inequalities (see e.g.[Sil][Aiz|[BFS]|[Frd]). One
drawback, however, is that the form of the propagator (I1.3.11) is not so simple.
Hence in the next section on perturbative renormalization we will not use this
lattice regularization at all.

Nevertheless when turning to constructive theory, it is good to keep several
types of cutoffs at hand, and to show unicity of the limit obtained with these
different cutoffs. This unicity may follow from a theorem relating the limit in a
unique way to some well defined perturbation expansion, like the Borel summa-
bility theorems which will be discussed later. The advantage is that the final
theory will typically retain all properties preserved by at least one set of these
different cutoffs. This idea was applied to check the axioms for the Gross-Neveu
model in [FMRS5]. From this point of view, we remark that the two cutoffs intro-
duced in this section, the a-space and lattice cutoff are complementary, because
they violate different axioms. The a-space cutoff, like the Pauli-Villars and other
“momentum” space cutoffs, preserves Euclidean invariance but violates O.S. pos-
itivity. In contrast the lattice cutoff preserves a discrete version of O.S. positivity,
namely reflection positivity with respect to hyperplanes of symmetry of the lat-
tice; in the case of a cubic lattice this means the planes passing through the sites
or halfway between. However the lattice is only invariant with respect to a few
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discrete Euclidean symmetries, hence the lattice regularization is not Euclidean
invariant.

Returning to our basic objects of study, the Schwinger functions, we observe
that they still contain some rather trivial substructure which one may want to
trim out in order to arrive at more interesting irreducible objects. It is a standard
useful construction to build from the Schwinger functions two other classes of func-
tions called respectively the connected Schwinger functions and the one-particle
irreducible (in short 1PI) Schwinger functions (in statistical mechanics connected
functions are called Ursell functions or cumulants).

The connected Schwinger functions are given by:

k
On (21, 28) = > (D T Sp (2310 on25,,)  (L3.16)
=1

PU...UP,=[1,N]; P;NP;=0

where the sum is performed over all distinct partitions of [1,N] into k subsets
Py, ..., Py, P; being made of p; elements called jy, ..., jp,. For instance the connected
4-point function in the high temperature region of the ¢* theory, where all odd
Schwinger functions vanish due to the unbroken ¢ — —¢ symmetry, is simply
given by:

Cu(21yeey 2a) = Sal21, .oy 24) — S2(21, 22)S2(23, 24)
—52(2’1, 2’3)52(2’2, 24) — 82(21, 24)82(22, 2’3) (1317)

The 1PI functions, also called vertex functions, I'x(z1, ..., zx) are slightly harder
to derive from the Schwinger functions. Nevertheless 1PI functions may be defined
rigorously directly from the Schwinger functions, without relying on perturbation
theory as their names seem to suggest. This direct construction involves combin-
ing the formalism of the first Legendre transform with T. Spencer’s idea of testing
irreducibility through decoupling surfaces [Sp2]. For a complete presentation of
this point of view we refer to [CFR]. Here we will give simply a naive formal defi-
nition, and admit that vertex functions can be derived rigorously from Schwinger
functions and vice versa. We will also admit that the perturbation theory of these
objects coincide with the usual graphical definition of one particle irreducibility.
The generating functional for the connected functions is:

C(J) = LogZ(.J) = Log / e du($) (1.3.18)

in the sense that

C’N(Zl,...,zN):H 0 C(J)] =0 (1.3.19)

The first Legendre transform is defined by inverting

()]0 (1.3.20)

D(A) = C{J(A)} — %{J(A)}.J(A) (L3.21)
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where the “scalar product” is defined by 5.7 = [ dx 63%’;) J(x)
This Legendre transform is the generatmg functional for the vertex functions,

which are therefore given by:

N
FN 21,..., H

A)lao (1.3.22)
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I.4 Feynman graphs and amplitudes

A) Graphs
The perturbation expansion is an expansion in powers of the coupling con-
stant. In the case of the Schwinger functions (I.3.4) this means that one writes:

SN (21 s 28) = %Z (_Tf’!)n [ if>]"¢(z1)...¢(zN)du(¢) (1.4.1)

n=0

It is possible to perform explicitly the functional integral of a polynomial in the
fields with respect to a gaussian measure. The result, called in physics “Wick’s
theorem”, gives at any order a sum over “Wick contractions”, i.e. ways of pairing
together the fields in (I.4.1). More precisely, we can label the integration variables
in (.4.1) as xq,...,o,, and the 4 fields in a monomial ¢* as ¢yPadzdy. Then
we commute the spatial integral over xq,...,x,, and the functional integral. The
result is a gaussian integral over a polynomial in ¢ of degree 4n 4+ N, namely
1T, Hi:1 oF (x;) H;\;l ¢(z;). By the rules of gaussian integration, the result is:

Z H C(:L'l, yl) (1.4.2)

T lell

where the sum is over contraction schemes II namely the partitions of the set of
all 4n + N fields into 2n + N/2 pairs [, called lines. For such a line [, x; and y; are
the arguments of the fields in the pair. (There is no ordering ambiguity in (I.3.2)
since C(x,y) = C(y,x)). There are exactly (4n + N — 1)(4n + N — 3)...5.3.1 =
(4n + N — 1)!! such contraction schemes.

Formally at order n the result of perturbation theory is therefore simply the
sum over all these schemes II of the spatial integrals over x1, ..., x,, of the integrand
(1.3.2) times the factor - (5£)™. These integrals are then functions (in fact distri-
butions) of the external positions zq, ..., zy But they may diverge either because
they are integrals over all of IR* (no volume cutoff) or because of the singularities
in the propagator C' at coinciding points.

For practical computations, it is obviously more convenient to gather all the
contractions which lead to the same topological structure, hence the same integral.
This leads to the notion of Feynman graphs or diagrams. To any such graph is
associated a contribution or amplitude, which is the sum of the contributions
associated with the corresponding set of Wick contractions. The Feynman rules
summarize how to compute this amplitude with its correct combinatoric factor.
In the case of Euclidean ¢% these rules are rather simple and we will describe them
in detail, introducing some terminology and notations which are used throughout
the rest of the book.

A Feynman diagram is a set of labelled vertices together with a set of lines
between them. Each line is hooked at each end to a given vertex. Such an “end”
of a line is called a half-line. Half lines are the remnants of the fields after Wick’s
theorem has been applied. There may be vertices called the external vertices,
labelled as Vi, ..., Vi, to which only a single half-line is hooked. And there may
be internal vertices, labelled vq, ..., v,, to which more than one half-line is hooked.
We call the diagram a ¢* diagram if there are exactly four half-lines hooked to
any internal vertex. Examples of ¢* diagrams are shown in Fig..4.1. Clearly
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the (bare) ¢* perturbation theory leads to ¢* diagrams whose N external vertices
correspond to the external fields in (I.3.1). For the renormalization of ¢ it will be
convenient to define also generalized ¢* diagrams as diagrams with four types of
internal vertices, the regular internal vertices with four half lines plus three kinds
of special internal vertices for counterterms:

- the coupling constant counterterm, with four half lines,

- the mass counterterms, with two half-lines,

- the wave function counterterms, again with two half-lines, and two arrows to
distinguish them from the mass counterterms. We will see that these arrows
correspond to derivative acting on the corresponding propagators.

The counterterms are pictured as thicker “blobs” to distinguish them from
the ordinary ones. Generalized ¢* diagrams are shown in Fig.1.4.2. Usually it will
be clear from context which class of graphs is considered.

Feynman diagrams without any labelling of the internal vertices are called
Feynman graphs. Therefore there are at most n! diagrams corresponding to a
graph.

We use always the following notations for a graph G:

- n(G) or simply n is the number of internal vertices of G, or the order of the
graph.

- I(G) or [ is the number of internal lines of G, i.e. lines hooked at both ends
to an internal vertex of G. We use also widely [ as an index for lines; in cases
where confusion is possible, we try to note always the number of lines as [(G).

- N(G) or N is the number of external vertices of G; it corresponds to the
order of the Schwinger function one is looking at. When N = 0 the graph is
a vacuum graph, otherwise it is called an N-point graph.

- ¢(G) or c is the number of connected components of G,

- L(G) or L is the number of independent loops of G.

For a regular ¢* graph, i.e. a graph which has no line hooked at both ends
to external vertices, we have the relations:

[(G)=2n(G) — N(G)/2 (1.4.3)
L(G) =1l(G) —n(G) + ¢(G) (1.4.4)

and, for a connected graph:
L(G)=n(G)+1—-N(G)/2 (1.4.5)

We like to define the superficial degree of convergence, which is the opposite
of the more standard degree of divergence. For ¢% it is:

w(G) =2(G) — dL(G) (1.4.6)
so that for a connected graph:

d—2
w(G@) =4 —-d)n(G) + TN(G) —d (L.4.7)
It will be important also to define what we call a subgraph; this is not a

completely straightforward notion. A subgraph F' of a graph G is a subset of
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internal lines of G. Hence there are exactly 2/(%) subgraphs in G. We call the
lines in the subset defining F' the internal lines of F', and their number is simply
[(F), as before. Similarly all the vertices of G hooked to at least one of these
internal lines of F are called the internal vertices of F' and considered to be in F
their number by definition is n(F’). But remark that no external vertex of G' can
be of this kind. Precisely for this reason, the notion of external vertices does not
generalize simply to subgraphs. Nevertheless for power counting we need at least
to define a generalization of the number N for subgraphs. A good convention is
to call external half-line of F' every half-line of G which is not in F' but which is
hooked to a vertex of F'; it is then the number of such external half-lines which
we call N(F). With this convention one has for ¢? subgraphs the same relation
(1.4.3) as for regular ¢* graphs.

The definitions of ¢, L and w for subgraphs are then straightforward, and
relations (I.4.4)-(1.4.7) extend to them.

Finally it will be useful to have a particular name for the vertices of F attached
to at least one external half-line of F'. We call them the “border” vertices. The
internal vertices of F' which are not border-vertices are called inside-vertices. We
will see that border-vertices partly play the role of external vertices for subgraphs,
in the sense that it is sometimes natural to integrate over the position of inside-
vertices and to consider the corresponding “subamplitudes” as functions (in fact
distributions) of the positions of the border-vertices. Examples of subgraphs are
pictured in Fig. 1.4.3.

B) Amplitudes

To compute the amplitude associated to a ¢* diagram, we have to add the
contributions of the corresponding contraction schemes. This is summarized by
the rules:

- To each line /; with end vertices at positions x; and y;, associate a propagator
C(l'ja Yj ) .
- To each internal vertex, associate (—g)/4!.

- Count all the contraction schemes giving this diagram. The number should
be of the form (4!)"/S1(G) where S1(G) is an integer called the symmetry
factor of the diagram. (If it is not the case, try again). The 4! represents the
permutation of the fields hooked to an internal vertex. Remark that Si(G)
does not depend on the labelling of internal vertices, hence is a function of
the underlying graph.

- Multiply all these factors, divide by n! and sum over the position of all internal
vertices.

This gives the bare amplitude of a diagram, neglecting possible divergences.
To get the bare amplitude for a graph, we count the number of diagrams giving
rise to this graph (by erasing internal labelling). This number is n!/S5(G), where
S2(G) is an integer. S(G) = S1(G)S2(G) is called the total symmetry factor for
the graph GG. Some of these factors are shown in Fig. 1.4.4.

The formula for the bare amplitude of a graph is therefore, as a distribution
in 2zq,....2n:
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Ac(21, o 2n) = /dei T] C et m) (L.4.8)

=1 leG@

As stated above, this integral suffers of possible divergences. But the cor-

responding quantities with both volume cutoff and ultraviolet cutoff x are well
defined. They are:

AG (21, 2N) = /A dei H Cu(zi, 1) (1.4.9)

"i=1 leG

The integrand is indeed bounded and the integration domain is a compact box.

Returning to (I.4.1) the unnormalized Schwinger functions are formally given
by the sum over all graphs with the right number of external lines of the corre-
sponding Feynman amplitudes:

)@
%AG =3 (g (1.4.10)

n

78N = Z

¢* graphs G with N(G)=N

7 itself, the normalization, is given by the sum of all vacuum amplitudes:

)@
%AG =3 (—g)" (L4.11)

n

ZSN = >

¢* graphs G with N(G)=0

From translation invariance, we do not expect Aa A to have a limit as A —
oo if there are vacuum subgraphs in G. But we can remark that an amplitude
factorizes as the product of the amplitudes of its connected components at least as
far as the integral is concerned; the only subtle point is the combinatoric factors,
which are not easy to disentangle at the level of graphs because of the factor
S(G), but which are reasonably transparent at the level of contraction schemes.
Let us consider (I.4.11). Clearly each contraction scheme w creates a partition of
the n vertices of (I.4.1) into k subsets V1,... Vj of ny,... ny vertices which are the
connected components of the contraction scheme. Summing first over the partition
and then over the schemes which give rise to this partition, one has to take care

of the proper combinatoric factor n!/ [] mn;! to attribute the vertices to each
i=1,..k

subset, and of an additional % since partitions are unordered sums; then the initial
sum is put in the form >vi...vi 11; A(Vi) where A(V') is a power series exactly
similar to the initial one, except that when applying Wick’s theorem, only Wick’s
contractions which connect together all the vertices of V' are allowed. Therefore
one has proved that the pressure p(A) = |_11\| log Z(A) has a perturbation expansion
given by the sum of all vacuum connected Feynman amplitudes:

)&
p(A) = > ﬁ%AQAEZ(—g)na% (1.4.12)

¢* connected vacuum graphs G n
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Later in this book we introduce the Mayer expansion which is a sytematic way of
computing the logarithm of partition functions, and we invite the reader to prove
again equation (I.4.12) using this general method.

When G is a vacuum connected graph, there is a single overall translation
invariance in its amplitude; therefore using the rapid decay of (I.3.6) for large
|z — y| we expect |T1|AG,A to have a limit as A — oo, hence the pressure, not the
normalization, is the correct quantity to consider in the thermodynamic limit. For
G such a vacuum connected graph we write:

. 1 B
lim WAG,A =Ig = /]Rd / . dei Hc(xlvyl)|x1=0 (1.4.13)

A—oo
1#£1 l

With similar simple combinatoric arguments or with the formalism of the
Mayer expansion, we can also factorize the vacuum graphs in the expansion of
unnormalized Schwinger functions, and get for the normalized ones:

Sn = >

¢* graphs G with N(G)=N
G without any vacuum subgraph

)
%AG =S (—g)al  (14.14)

Again in (I.4.14) it is possible to pass to the thermodynamic limit (in the sense
of formal power series) because using the exponential decrease of the propagator,
each individual graph has a limit (at fixed external arguments). There is of course
no need to divide by the volume for that because each connected component in
(I.4.14) is tied to at least one external source, and they provide the necessary
breaking of translation invariance.

Finally with the help of the Mayer expansion or by direct reasoning one can
determine the perturbative expansions for the connected Schwinger functions and
the vertex functions. As expected the connected Schwinger functions are given by
sums over connected amplitudes:

_ )@
%AG =3 (—g)"a), (L4.15)

n

Cn = >

¢+ connected graphs G with N(G)=N

and the vertex functions are the sums of the amputated amplitudes for 1PI or
proper graphs. They are the graphs which remain connected even after removal
of any given internal line. The amputated amplitudes are defined in momentum
space by omitting the Fourier transform of the propagators of the external lines.
It is therefore convenient to write these amplitudes in the so called momentum
representation:

—g)"(@)
Iy = Z %Ag(zl, vy ZN) = Z(—g)naﬁp

S(G
¢* proper graphs G with N(G)=N ( )

1 L
Ag(Zl,...,ZN) = W/dpldp[\[@ sz ZAG’(pla“pr) (1417)
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Ac(p1, - PN) = / H 1% H 5(2 €v,1D1) (1.4.18)

leg i =te. l

Remark in (I.4.18) the ¢ functions which ensure momentum conservation at each
internal vertex v; the sum inside is over both internal and external lines; each
internal line is oriented in an arbitrary way and each external line is oriented
towards the inside of the graph; then the incidence matrix €(v,[) is 1 if the line
[ arrives at v, -1 if it starts from v and 0 otherwise. Remark also that there is
an overall momentum conservation rule é(p; + ... + py) hidden in (1.4.18). By
Euclidean invariance it is clear that I depends only of the Euclidean invariants
built on the external momenta, which are scalars; this remark is important for
interpolation of amplitudes to non-integer dimension [Er2]. Notice that in the ¢*
theory a connected vacuum graph is always proper, and indeed for N = 0 the
definition (I.4.18) coincides with (I.4.13). We may define P, as the sum of all
external momenta entering vertex v, in which case the momentum conservation
function at each vertex becomes (P, + ), €,p;), where the sum runs now over
internal lines [ only.

The drawback of the momentum representation lies in the necessity for prac-
tical applications to eliminate the 6 functions by a “momentum routing” prescrip-
tion, and there is no canonical choice for that. An other interesting representation
is the parametric representation which is obtained after the x space or p space inte-
gration has been explicitly performed, using respectvely representations (I1.3.6) or
(I.3.5) of the propagator. This is possible because these integrations are quadratic.
The result is a compact formula with one scalar integration over a parameter «
for each internal line of the graph. To write down explicitly this formula requires
(for the first time in this book) the key combinatoric notion of a tree, so we pause
for a while to give some corresponding definitions and notations.

C) Trees

A tree can be defined as a graph which is connected and without loops. If
the constraint of connectedness is removed we have a forest, which is therefore
nothing more than a finite set of trees. Like in the distinction between graphs and
diagrams, we have to decide whether the vertices of the tree will be labeled or not.
One of the most useful aspects of trees lies in the partial ordering relations they
provide. More precisely, to any particular vertex of a tree is associated a natural
partial ordering obtained by drawing the tree with that particular vertex as its
root. This partial ordering means that a vertex is “higher” than an other if the
particular unique path connecting it to the root passes through the other. Maximal
vertices may be called the “leaves” and the tree together with its particular vertex
a “rooted tree”.

Up to now this description is rather intuitive; sometimes the problem of count-
ing trees arise and the reader may like to have a more set-theoretic definition. We
propose to define both unordered and ordered trees. A labeled unordered tree (or
simply a tree) with n vertices is simply a set T" of n-1 unordered pairs or links
{l1,...,1,—1} among n elements (vertices) which can be represented as {1,...,n},
with the property (P):

For any couple of vertices (i,]) there is a unique path from i to jin T (P)
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A rooted tree is a tree plus the choice of a particular vertex; hence there are
n rooted trees with n vertices for any single tree.

One may call “tree shapes” the quotient of trees by the equivalence relation
of erasing the labels of vertices. For n = 3, 4, 5, there are respectively 1, 2 and 3
tree shapes, but unfortunately such a simple series does not continue and we do
not know whether there is a simple formula for the number of tree shapes at any
order.

The tree shape is somewhat probed by the coordination numbers of the tree,
which are the numbers d; of pairs containing i. It is for the number of labeled un-
ordered trees, with or without fixed coordination numbers, that Cayley’s theorem
gives a simple formula:

Theorem 1.4.1: Cayley’s theorem

The number of labeled unordered trees with n vertices is n™ 2.

such trees with fixed coordination numbers d; is %

The number of

For instance for n = 4, there are sixteen trees, depicted in Fig.l.4.5. For
coordination numbers (3,1,1,1) there is a single possibility, because the tree shape
is the first one and the vertex with n; = 3 must be at the center; for coordination
numbers (2,2,1,1), there are 2 possibilities.

It is also sometimes useful to define a “labeled ordered rooted tree” or in short
an ordered tree as a rooted tree plus a total ordering which is compatible with
the partial ordering relation of the rooted tree, and such that the root has label 1.
Hence it may be viewed as a permutation j of {1,...,n} satisfying j(1) = 1, plus
an “ancestor” function a from {1,...,n—1} to {1, ...,n — 1} which satisfies, instead
of (P), the property:

A(k) <k VEk (P)

The links of the trees are the pairs (i(k),j(k+ 1)), k = 1,..n — 1, where i(k) =
j(a(k)). Such a structure appears naturally in the cluster expansion scheme of
section III.1. There are at most (n — 1)! ordered trees for an unordered one; there
are for instance 176 ordered trees for n = 4, but no simple general formula.

Inside a graph one defines a spanning tree (or in short, a tree) as a subset of
internal lines which is a tree and which connects together all the internal vertices
of the graph (hence is maximal for the number of lines); a two tree is a spanning
tree minus one line, hence it splits the internal vertices into two connected subsets.
Remark that graphically a two tree is either a forest of two trees or a single tree
plus an isolated vertex (if the line removed from the spanning tree was an extremal
one).

D) Parametric representation

With these notions, let us return to the parametric representation and prove:

—ZalmQ—Vg(a,p)/UG(a) 1

Ag(pl,...,pN)zé(ZPv)/OooHdale z e
° l (1.4.19)
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where Ug and Vg are polynomials in o depending on the particular toplogy of the
graph, called the Symanzik polynomials. Their explicit expression is:

Ue=> | « (1.4.20)

S [ notin T

=0 I > pa)? (1.4.21)

T [ not in T a€Ty

In (I.4.20) the sum runs over the spanning trees S of G, and in (I.4.21) over the
two-trees 1" of G which separate GG into two connnected components, each contain-
ing a non empty set of external lines, one of which is 77 (by overall momentum
conservation, (I.4.21) does not change if T} is replaced by the set of external lines
of the other connected component, which is the complementary of T}).

Proof Following [IZ], we rewrite the ¢ functions expressing momentum conserva-

tion as:
—iyv.(pv—i—z €y,1P1)

@2m)?(Py + ) coupr) = /dyve l (1.4.22)
l

Then we exchange the order of integration and integrate over each p; (recall that
this is just a formal computation of bare amplitudes):

v = —— ¢ = (1.4.23)

p —op} =iy Yuewpr 1 —O  yvew)? /ey
/d pie T2

Therefore:

2 2
dyv o~ o-Po doy —arm® =3 yvev,1)? /4o
A (p17- 7pN /H Y H ﬂ-al d/2 v (1424)

To integrate over y’s variables, we shift by y,, the last variable, defining z, =
Yy + yn for v < n, and z, = y,. The jacobian is one. Since ) ¢,; = 0, the
integration over z, simply yields the overall momentum conservation 6(>, P,)
and we are left with n — 1 quadratic integrations. We define the n — 1 by n — 1
square matrix [dgl; ; fori<n—1,j<n—1as

1
da(a)ij =Y €Ll € (1.4.25)
l

The gaussian integration in (I1.4.24) corresponds to
e—(%)(y—{—QiPdal)dG(y—i—ZiPdal)t—PdalP (1.4.26)

with obvious matrix notations, and the result is det(d 4/2g—pPdg'P ). Combining

this with the factor [[, a; 2 (I.4.24) achieves the proof of (I1.4.19)-(1.4.21),
provided one can show that dg is non singular and that

det dg(a) =) H (1.4.27)

T lET
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S P3P, = —%ﬁﬁ (1.4.28)

ij=1
These results are called topological formulas. A detailed study of such formulas
is in [Nak]. We will limit ourselves to a quick proof of (1.4.27), using the Binet-
Cauchy formula. This formula computes the determinant of a p by p matrix C'
which is the product of two rectangular matrices A and B, the first p by ¢ and the
second ¢ by p. We may assume p < ¢ for non triviality and the formula is simply:

det C'=) " det Ay det By (1.4.29)
M

where M runs over all subsets of p indices among ¢, and the minors Ay; and B, are
obtained by deleting in A (respectively in B) the columns (respectively the lines)
with indices not in M. Now let us call ¢, the reduced incidence matrix obtained
from e by deleting the n-th line (correponding to vertex n). We have dg = €, ael,,
where « is the diagonal matrix «;6;. From (1.4.29), (1.4.27) obviously follows if
we can check that €, has rank n — 1 and that its n — 1 by n — 1 minors €, y
are +1 or 0 depending on whether the lines kept in M form a tree or not. If
in €, we keep a subset of lines M which is not a tree, it has to contain a closed
circuit, and the sum of incidence numbers along such a circuit is 0; this gives
a linear relation which proves that the corresponding minor is 0. Finally when
M is a tree, the fact that the minor is £1 can be checked by induction on the
number of vertices of G; we consider a line [ of M hooked to the vertex n deleted
in €,; then the corresponding column in €, has only one nonzero element [e,];;.
Expanding the corresponding minor with respect to that column we obtain up to
a sign the same problem for a smaller graph G/l in which line [ has been deleted
and vertices n and ¢ are collapsed. Indeed M —1 is still a spanning tree of G/l and
we may assume the collapsed vertex to be the distinguished one in G/I so that the
induction hypothesis applies.

The parametric representation is perhaps the most elegant of all and is well
suited for the study of particular amplitudes, and also for general results like
analyticity properties, existence and nature of asymptotic expansions in various
regimes, and also for writing renormalization operators which act directly on the
integrand [BL|[BZ]. It is in this representation that large order bounds for the
renormalized ¢* theory were first obtained [dCR1] . Nevertheless we will not use
it in these notes, because constructive theory relies heavily on = space which is
lost in the parametric representation.

In the next chapter we will use a mixed representation based on (I.3.6) but
with a further discrete slicing of the « integration. This representation which we
call the multiscale representation, was introduced and used for perturbative and
constructive studies in the series of papers [FMRS1-5] which is at the origin of
this book. Many variations over this theme are worth being studied. For instance
with the pure z and « propagator (without the discrete slicing), perhaps the most
elegant and dense study of the perturbative renormalization of ¢* has been given
recently in [Hu]. Nevertheless throughout this book we stick as much as possible
to the original representation of [FMRS1], because at least up to now a discrete
slicing seems necessary for constructive purposes.
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1.5 Borel summability

Borel summability is one of many possible substitutes for ordinary summa-
bility. It has proved very useful for the analysis of many divergent series met in
physics, and provides in particular a noatural framework for the study of the per-
turbative series met in this book. Therefore we include this brief section to recall
what it means.

An analytic function inside its domain of analyticity is the sum of its Taylor
series, so that all information about this function is embedded in the list of Taylor
coefficients at an interior point. Ordinary summation then provides a one to
one correspondence (at least inside a convergence disk) between convergent power
series and analytic functions. Borel summability is a method to extend this one to
one correspondence to the case of an analytic function expanded in Taylor series
at a point on the border of the domain of analyticity. Such a Taylor series is no
longer summable in the ordinary sense, but under precise conditions it may still be
associated in a unique way to a function with sufficiently large analyticity domain
and sufficiently strong asymptoticity to this Taylor series. In this sense, again
all the information about the function (the “Borel sum”) is still embedded in the
series (the “Borel series”).

In [Ha] there is a version of Borel summability which was popular among
physicists, until A. Sokal found a somewhat simpler and more natural version
[Sok1]. This version was in fact a rediscovery of a theorem of Nevanlinna [Ne],
published in 1919:

Theorem 1.5.1 (Nevanlinna-Sokal)
Let f be analytic in the disk Cr = {y|Rey™! > 1/R} of Fig.I.5.1. Suppose f
admits an asymptotic power seriers > apy” (its Taylor series at the origin) hence:

fly) = Z_: ary” + R (y) (I.5.1))
k=0

such that the bound
IR (y)| < comrllyl" (1.5.2)

holds uniformly in r and y € Cg, for some constants o and C'. Then f is Borel
k

summable, which means that the power series Y., ait: converges for [t| < %,

that it defines a function B(t) which has an analytic continuation in the strip

Sy = {t| dist (t,IR") < 1} of Fig L.5.1, and that this function satisfies the bound
|B(t)| < const.e® for t € RT (I.5.3)

Finally f is represented by the following absolutely convergent integral:

t

fly) = 5/0 e~ v B(t)dt for y € Cg (I.5.4)

Under these conditions, f is said to be Borel summable, and B is called
its Borel transform. The complex t plane is called the Borel plane. There is a
reciprocal to this theorem which states that starting with a given power series

3" ary® if the power series thk—i converges in a disk |t] < L, admits an anlytic
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continuation B(t) in the strip S, and satisfies the bound (I.5.3) in this strip,
then the function f defined by the integral representation (I.5.4) is analytic in
CR, has 3" apy” as Taylor series at the origin and satisfies the uniform remainder
estimates (I.5.1-2). In this case we say that the series > apy” is Borel summable,
that the series ) aktk—i is its Borel transform, and that the function f is its Borel
sum. In conclusion Borel summable series and Borel summable functions are
in correspondence just as are ordinary series and germs of analytic functions.
However the analytic continuation in the Borel strip involved in the construction
of the function from its series is usually untractable, so that it is the direct theorem
which is used in practice.

This theorem is by no means optimal, in the sense that for many typical
power series it does not reconstruct the maximal analyticity domain of the Borel
sum; this can be checked even in the simplest non-trivial case ay = (—1)¥k!. One
can use modified versions to recover in this kind of situations a larger domain
of analyticity; also for power series with different large order behavior, such that
(n!)® for instance, the Nevanlinna-Sokal theorem should be modified (for instance
by applying some conformal maps of the disk of Fig.I.6.1 onto other domains).
We do not attempt a review on the extensive mathematical litterature on this
subject. There are also many results of a general nature on Borel summable
functions, which state for instance that products, derivatives, inverse, composition
etc... of Borel summable functions remain Borel summable basically provided
these operations make sense (see e.g. [AM][BCS]). Regular Borel summability is
adequate for the problems discussed in this book; in particular the Borel plane is
the natural setting to study the large order behavior of ¢? (section I1.6) and the
relationship between asymptotically free models and their perturbation expansion
(sections IL.5, I11.3-4).
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PART II: PERTURBATIVE RENORMALIZATION
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I1.1 The multiscale representation and a bound on convergent graphs

Suppose we had a strictly finite theory,

with bounded propagators, bounded integrals and all that.
Individual diagrams in such a theory are then bounded
by a pure power law as a function of their order n.

— G. 't Hooft, “Can we make sense out of QCD?”

In this section we prove in detail a bound which we think is the best pedagogi-
cal introduction to multiscale expansions. It is a kind of “uniform” Weinberg theo-
rem. The original Weinberg theorem [We] proves that any graph G for which each
connected subgraph S has a positive superficial degree of convergence w(S) has
indeed a finite amplitude (hence does not require renormalization). From (1.4.7)
this means in the case of ¢} that any graph G such that each connected subgraph
S has at least 6 external lines (5 being forbidden) is finite. Such graphs will be
called completely convergent; some examples of them are shown in Fig.II.1.1.

The best proof of the Weinberg theorem is in the parametric representation,
by use of Hepp’s sectors [Hel-2]. Although the result agrees with intuition based
on “power counting”, it is not trivial and rests on the particular structure of the
Feynman integrand, more precisely on the structure of Symanzik’s polynomials.
It is of course not true that any multidimensional integral converges when each
subset of parameters has convergent scaling properties; for instance the integral

o0 o0 oo d d d —] —Q2—03
/ / / ardag a;,agage i (I11.1)
o Jo Jo (a + azas)

is not absolutely convergent, although it is superficially convergent under scaling

of any given subset of aq, as, as (one could find more complicated examples,
superficially more ressembling to actual Feynman amplitudes). But the Symanzik
polynomial Ug of the last section cannot be of this type. The key property of
Ug, not shared by the example above, was called the fine (Factorized IN Each
sector) property in [dCM]. For ¢ any permutation of [1, ..., ], the associated Hepp’s
sector H, is the region ag () < ... < a4 (. By definition, a fine polynomial P of
[ variables aq,...,a; is such that in each Hepp’s sector H, after the change of
variables a,(;y = Hé:z B; is performed, P factorizes as [[; 8“9 (ay + Q,(B))
where a, is a non zero constant, and (), is a polynomial in 3’s. It is not too hard
to check from (I1.4.20) that Ug is fine; one identifies a particular spanning tree T,
in G whose lines have maximal numbering with respect to the permutation o; the
corresponding monomial gives the leading term of the fine property, hence in this
case a, = 1; then one checks that all other trees in G give non trivial monomials
in (3, hence their sum is the polynomial @,.

With these indications the reader can easily recover Weinberg’s theorem. But
it is harder to give a bound on the value of the corresponding Feynman amplitudes
which is of the type K™ where K is a constant and n the order of the graph (a
good measure of its “size”). Such a bound, which we call the “uniform” Weinberg
theorem, was in fact first proved in the a representation [dCR] but this first
proof is admittedly not very transparent. The goal of this section is to give in
detail a more transparent proof, based on what we call a multiscale representation.
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Multiscale decomposition inspired early work of K. Wilson on the renormalization
group; introduced in constructive field theory by Glimm and Jaffe [GJ1], it was
in particular developped and applied in [MS1-3][FO][Fedl]; the version we use
now evolved from these works and follows [FMRS1] with some simplifications and
improvements.

We consider a sequence of “momentum slices” which follow a geometric pro-
gression of ratio M, where M > 1 is fixed (later it might be often convenient to
choose M integer). If we use an ultraviolet cutoff in « space of the type (1.3.7-8), it
is natural to cut these slices in o parametric space. So we start from (1.3.7), with
k = M~2P. The propagator C,,, now written C), with a slight abuse of notation is
cut into a discrete sum of propagators C* by the rule:

P
C,=)» (" (IL.1.2)
1=0
M2 )
o _ / gma- et do (I1.1.3)
M—2i «
>0 2 d
0 _ /1 p—ma—lotl adC;Q' (IL.1.4)

« being dual to p?, one should consider each propagator C* as corresponding to
a theory with both an ultraviolet and an infrared cutoff, which differ by the fixed
multiplicative constant M, the momentum slice “thickness”.

The decomposition (I1.1.2-4) is the fundamental technical tool used in this
book. By the general structure of gaussian measures, there are associated decom-
positions of the gaussian measure dp, corresponding to the propagator C, into a
product of independent gaussian measures du’ and of the field ¢,, as a random
variable distributed according to d,, into a sum of independent random variables
¢*, each ¢' distributed according to dy’:

P
bp =2 0% dup(d,) = D_odu’ (") (I1.1.5)

i=0
There are of course other technical ways to introduce momentum slices; in
statistical mechanics or for lattice regularized models, the technique of block spin
transformations [Ka| is very general and powerful; in constructive theory it has
been used for instance in [BCGNOPS|[GK1-4|[Ba2-9][Fed2-7] etc...; it consists in
writing, in a sequence of scaled lattices, each field variable as an averaged field in
some cube of the next scale, plus a fluctuation field. An other elegant method close
to (I1.1.2-5) consists in defining the sliced fields as the coefficients of the full field
on an orthonormal ondelettes basis [Bat2-3]. Each method has some advantages
and drawbacks; the decomposition (II.1.2-5) is not the most general since it is only
adapted to expansions around a gaussian measure, a frequent but not universal
situation. Nevertheless it is simple, and has over the more general block spin
methods the advantage of independence of the gaussian measures in various slices.
We summarize this property by saying that the covariance is diagonal (in the
space of values ©); this leads to a clear picture of the respective role of the gaussian

measure and of the interaction, as will be stressed below.
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In this part IT devoted to perturbation theory, the language of fields and
gaussian measures may be most of the time avoided; in Feynman diagrams the
functional integral over the fields is already performed and only propagators do
appear, so that we will use mostly (I1.1.2-4). However it is a good thing to keep also
in mind the related decomposition (II.1.5), since the field point of view becomes
more and more important as harder problems are considered, and is absolutely
necessary for constructive theory (part III).

It is an easy exercise to derive the following bound:

Lemma II.1.1.
There are positive constants™ K > 1 and 6 < 1 such that:

Ci(z,y) < KM(d=2ig=6M"le—y] (IL.1.6)

This bound captures the significant aspect of both cutoffs; an overall factor
which shows that the singularity of C' at coinciding points has been smoothed by
the ultraviolet cutoff at a certain scale, and a scaled spatial decrease which comes
from the infrared cutoff. (In the case i = 0, § can be taken as any number less than
m, the mass appearing in C'). This is optimal from the point of view of Fourier
analysis; better “spatial resolution” costs a worse overall power counting factor.

Of course changing by a fixed factor M or M~! the values of K and §, we
could as well rewrite (IL.1.6) as:

Ciz,y) < KM@=+ =M fz—y] (I1.1.7)

which is later convenient because i + 1 is exactly the number of slices between 0

and 1.
Using the slice decomposition we rewrite the bare amplitude for a Feynman
graph as:
Aa = Z Acp
ME]NI(G)
Agu = /Hd% 11 C™ (w1, 1) 11 Cp(zi,y) (IL1.8)
v [ internal line of G [ external line of G

where p is called a “momentum assignment” (or “index assignment”) and is a list
of integers, which gives for each internal line ! of G the index 4;(u) (or simply 4;)
of the corresponding slice. Ag,, is the amplitude associated to the pair (G, p),
and (I1.1.8) is called the multiscale representation of Feynman amplitudes. For
the moment it is convenient to consider that external lines have an associated
fictious index -1, but that their propagator C, is not decomposed into slices.
Decomposition of external lines into slices may become useful for detailed results,

* Important convention We use 6,6, ¢, (, ... as generic names for small con-
stants and K, Kq,c, ... for large ones. We may also write const. for a constant in
some equations. We try to avoid any ambiguity, but these “constants” are often
constant only in the context of the statement, and may depend in fact of the value
of some parameters in a larger context.
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e.g. on asymptotic behavior as some set of external momenta are scaled, but we
do not use it in this book since we focus about basic existence problems.

The bare amplitude in (I1.1.8) appears as a sum over the position of vertices
and over momentum assignments. Together, these two sums make a kind of sum
over “phase space”; but this traditional name is misleading, because this phase
space is not the 2d-dimensional cotangent bundle associated to d-dimensional
space! It is rather a sort of d + 1-dimensional space with d continuous spatial di-
mensions and one discrete dimension, called the index space (or momentum space,
with some abuse of language). This discrete space is moreover in most problems
only a half-space, because we are usually interested either in an ultraviolet or in
an infrared limit, but not in both together.

A key fact to relalize is that in this phase space lines and vertices play a dual
role. To support this intuition we draw a picture, Fig.I.1.2, of this phase space,
which is our fundamental way of thinking to the decomposition (II.1.8); so we
urge the reader to get some familiarity with it before going on, since we use the
underlying intuition all the time in the rest of this book.

In the two dimensional plane of the figure, we use the horizontal direction to
picture the d dimensions of space-time, and the vertical one to picture the discrete
momentum slices, with the highest ones at the top. Then a propagator belongs
to the slice of its index and appears as an horizontal line joining two vertices.
Internal vertices sit at a particular point in space and join 4 half-lines which may
be located in different slices. Hence it is convenient to picture them as vertical
lines connecting the 4 horizontal half-lines hooked to them. These lines are dotted
to distinguish them from the first ones. Finally the external lines are pictured in
the fictious “-1” slice, hence at the bottom of the picture.

Our goal is now to obtain the following theorem:

Theorem II.1.1: Weinberg uniform theorem for ¢}

There exists a constant K such that for any connected completely convergent ¢}
graph (i.e. w(S) > 0, VS C G) the Feynman amplitude (1.4.8) of G is absolutely
convergent and the following bound holds:

|Ag| < K™% Ext (IL.1.9)

where the function EFxt depends on the way external arguments are treated.

This theorem extends to a very general class of completely convergent graphs
which have power counting properties of the just renormalizable kind, but are
not necessarily ¢* graphs. In this more general version, in which an unbounded
number of lines may be hooked to a single vertex, it is [(G), not n(G) which is
the natural measure of the size of the graph, so that the corresponding generalized
bound is similar to (I1.1.9) but with a factor K“%) instead of K™): by formula
(I.4.3), both bounds are equivalent for ¢*. For this more general result we refer to
[FMRST1].

By factorization, bounds for non-connected graphs can also be derived easily
from (II.1.9). The point to emphasize in (II.1.9) is the uniform exponential char-
acter of the bound at large order expressed by the factor K™(@); the particular
form of Ext is secondary. In [FMRS1] the set of external vertices is called Vg, and
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three possible treatments for external cases are considered (the reader is invited
to try its own favorite):

-H1 Each external vertex is integrated over a standard unit cube of IR?,

-H2 Each external vertex v is integrated against a test function f, on IR*,

-H3 Each external vertex has a fixed external momentum k, entering it.

In these three cases a possible choice for Ext would be:

-Hl Ext= sup [] e—m(1=C) |z —y]
Ty, WVEVE [EG

‘H2 Eat= inf ||follr TT Ifwllzee
vEVE

w#VEVE
H3 Ext=6( Y k)
veVE

To underline the essential part of the argument, let us prove the theorem in
the slightly simpler case of an amplitude for which external propagators have been
amputated, and exactly one internal vertex vg is fixed to the origin (not integrated
over ]R4). This is in essence the case H3, because each external propagator (p? +
m?)~!is bounded by m~2 and N(G) < 4n(G), so that amputation does not change
the nature of the bound at large order, and fixing vy at the origin is the same as
taking into account the overall ¢ function of Fxt, which simply reflects translation
invariance.

We consider (I1.1.8) and perform first the integration over the positions of the
vertices in IR*. To do this in the best possible way according to the momentum
assignment, one should use as much as possible the decay of the lines with highest
possible index (see (I1.1.6-7)). This leads naturally to consider, for a given p and
i € IN, the connected components of G*, the subgraph of G made of all lines with
index 5 > 1. Let us call these connected components G};, k=1,..,10(i). There is
a systematic way to know whether a given connected subgraph g C G is a G, for
some ¢ and k. We define the internal and external index for g in the assignment g

| i) = o () (IL.1.10)
eq(p) = sup i(p) (I1.1.11)

[ external line of g

(with the p dependence sometimes omitted for shortness). The condition that in
the assignment u the subgraph g is a G%, for some values of i and k is simply:

ig(p) > eq(p) (almost local condition) (I1.1.12)

Subgraphs verifying condition (I1.1.12) are called almost local (with respect to
the assignment p). For such a g and each value of ¢ such that eg(p) < i < ig(p)
there exists a value of k such that g is equal to G&.

The Gi’s are partially ordered by inclusion and form in fact a forest, i.e. a
set of connected graphs such that any two of them are either disjoint or included
one into the other (disjoint here means not only no line but also no vertex in
common). This remark is essential both here and for the next section, which deals
with renormalization. Since G = GV is itself connected, the forest is in fact a tree,
whose root is the full graph G. This tree as been pictured in Fig.I1.1.3 for the case
corresponding to G and p as in Fig. I1.1.2.
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Each G is a node on this picture and a line between G} and GZTl simply
means that G C GZ,_l. For g almost local there is a sequence of vertical lines in
this tree with ¢, — e, nodes corresponding to g. This sequence may be collapsed
to a single line for simplicity and we obtain the tree of almost local subgraphs
pictured in Fig.II.1.3.

The tree of Fig.Il.1.3 is not exactly the same but closely related to the
Gallavotti-Nicol6 trees which are the key tools in their analysis of renormaliza-
tion theory [GaNi][Gall.

To integrate over the positions of internal vertices (save one, vg) requires at
least the decay of a spanning tree, which is a minimal set of lines connecting
together all the vertices For such a spanning tree 7', defining the xy vertex to be
the root induces a particular partial ordering on the vertices of GG, as explained
in Sect.I.4. Such a particular tree for the situation of Fig.I1.1.2-3 is pictured in
Fig.I1.1.4.

Remark that the two trees of Fig.Il.1.3 and Fig.Il.1.4. have very different
meaning; the one in Fig.II.1.3 is an abstract picture of the inclusion relations
derived from assignment pu, but the tree of Fig.Il.1.4 is a concrete set of lines of
G. Let us call i, the index in g of the line directly under vertex v in the partial
ordering shown in Fig.Il.1.4. If we use the decay of the lines of T" to integrate
over the positions of the vertices, starting from the “leaves” at the top of the tree
towards the root which is fixed, we have to forget the decay of the other lines of
G (the ones not in T') in order to have a simple expression. This is possible for an
upper bound (but would be difficult for a lower bound). This means that for any
T we can write:

/ H d4l‘y He—ézMil+1|ml—yl| S/ H d4.l'y He—ézMil+1|xl—yl|

v#vp leG v#vg leT

= [[ xpr—C-+1 (IL.1.13)
v#vg

where K is a constant (here 6~%.Q5 where Q3 is the volume of the unit three
dimensional sphere).

Now we should choose T so as to optimize (II.1.13), i.e. to make the i,’s as
large as possible. The best possible choice would be to require that 7" restricted to
every almost local subgraph is still a spanning tree of this subgraph. In this case
there is a kind of maximal compatibility between the trees of Fig.I1.1.3 and I1.1.4.
Such an optimal choice is always possible (ususally in a non unique way). Indeed
we can first choose spanning trees 7} in each “leaf” G, where p is the maximal
index appearing in p; then by induction, when several G};, are included in a single
Gz_l, we can always add one line in Gz_l to the union of the corresponding 7T7,’s
without creating loops in Gﬁc_l; we can repeat this until it is impossible to add
lines without creating a closed loop; but then we must have built a spanning tree
Tli_l of Gz;_l. In this way a global T is built inductively, which has the required
property of spanning each G};. Remark that the tree structure of the Gi themselves
is crucial for this optimization to be possible; obviously for the bubble graph of
Fig.I.1.1 there is no way to choose a tree whose restriction to the two “overlapping”
subsets made of one line of G is a spanning tree of both.
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Once this (non unique) choice of T' is completed, for any Gi; every vertex v
save one has i, > 4. (This is an easy consequence of the connectedness of T NG? ).
We use (II.1.8) and (II.1.13) with this choice of T'. Apart from overall constants
of type K™(&) or KX (which are allowed in the bound since I(G) < 2n(G)), the
contribution Ag , is bounded by:

1(7) 1(2)

[TITUTT arppr-a@io=ty = TT T ar-e) (I1.1.14)

i>0k=1 leGi i>0 k=1
To get this bound one should first rewrite for each line [:

MZ(il—{—l) _ H M2
(i,k) such that l€G?

because for every ¢ < ¢;, the line [ belongs to exactly one G};, and to none for
v > 1.
Now recall that since GG is completely convergent we have:

) . N(G?
w(Gh) = N(GL) —4 > (fk) (11.1.15)
Let us define
eo(p) = sup  d(p) (I1.1.16)
[ hooked to v
iy(p) = inf () (I.1.17)

[ hooked to v

where the inf in (II.1.17) is over every line hooked to v, including external lines,
which by convention have index —1.

We remark that for any i, a given vertex v belongs to exactly one G% for
i < ey(p) and to none otherwise. Furthermore some external lines of this G% are
hooked precisely at v if and only if i, (u) < i < e,(p). Hence, using (I1.1.15):

1(7) 1(2)
H H{M_w(a;c)} < H H{M—N(G};)/B»} < HM—%Iev(u)—iv(#)l (I1.1.18)

i>0 k=1 i>0 k=1

The meaning of this bound is that for a completely convergent graph, i.e. one
which has favorable power counting, after spatial integration the vertices pictured
as dotted lines in Fig.I.1.2 acquire an exponential decay in their length |e,(u) —
iy(p)] in the vertical direction. This is in a sense simply power counting viewed
on a logarithmic momentum scale (the space of discrete indices of the slices),
but a power counting ready to be exploited. Therefore the main advantage of
the multiscale decomposition emerges: it may be viewed as a machine which at
each scale effectuates some spatial integration affected to this scale and, if power
counting is favorable, gives as a reward a small factor for each dotted line (vertex)
which crosses this scale. These small factors build up a vertical exponential decay
which is very much the dual of the horizontal exponential decay of the ordinary
lines in each slice. It is intuitively obvious that this decay should make the sum
over momentum assignments easy, the external lines with their index —1 breaking
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vertical translation invariance, and playing therefore a role dual to the one of the
fixed vertex xo.

There are several ways to make this intuition more precise; let us describe one
of them, with no efforts to find optimal constants. Using the fact that there are
at most 4 half-lines, hence at most 6 pairs of half-lines hooked to a given vertex,
and that for such a pair obviously |e,(u) — i, (p)| > |i; — |, we can convert the
decay in vertical length of (I1.1.18) into a decay associated to each pair of half-lines
hooked to the same vertex:

[ ar-3les00-i 0l < T I1 M asl—iely (IL.1.19)

v (I,I") hooked to v

where again lines [,[” in (IL.1.19) are either internal or external, and the factor 18
is not optimal (it can be improved to 12 with negligible effort...). The analog of
picking a tree to perform the spatial integration is to pick a total ordering of the
internal lines of G as 1, ..., [;(@) such that [; is hooked to an external line of G and
such that each subset {ly,...,1,,}, m <I(G) is connected, which is clearly possible.
Using only a fraction of the decay in (II.1.19) we have:

UG)

M I Msbewly < [ =bi! (11.1.20)

v (I,I") hooked to v j=1

where j'(j) is the index of a line hooked at j but of lower index: 1 < j/(j) < j if
2 < j <I(G) and by convention iy, =L
Finally in (I1.1.20) performing the sum over p we obtain:

A< K19 S T < gD < k@ (1121
w={i1,--i(a)}

which achieves the proof of the theorem.

This proof is elementary and quite compact, but a subtle point remains, which
is the optimization over the trees T'. It introduces some sort of global choice which
is not very transparent. Therefore without giving all details we describe now
another slightly different way of getting the same result, which although in a sense
more complicated, has the advantage of being a single induction which works
from higher frequencies towards the lower ones. One can at each scale ¢ establish
an inductive bound in which spatial integration is completed for positions of all
vertices save one in each G%, without knowing the structure at lower scales. The
general outline is as above: In each G% all vertices save one should be integrated
with lines of scales higher or equal to 7, and this gives a volume effect naively in
MH Zk(n(G}c)_l), but when powers of M are distributed over all scales as above,
it is rather M_4Zk(n(G;c)_1) which should be attributed to scale 7. Similarly out
of the M2t associated to a line ! should come for scale i a factor M ™2 2 MG

together they reconstruct the desired factor M~ ka(G;“), from which vertical

Y

exponential decrease for dotted vertical lines and a uniform bound on the sum
over momentum assignments follows again. However the difficulty in this point
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of view in which no global choice of T is made first, is that one should preserve
a piece of the internal decay between the vertices of Gi for later use, otherwise
spatial integrations over vertices in some Gi;, with i < ¢ may be blocked later (if
these vertices were joined in G};,, only by paths passing through lines of G};, which
is perfectly possible). But how to remember a decay when points are supposed to
have been already integrated out? It is of course possible but there is no canonical
way. In the case of the exponential decay (II.1.6) or (IL.1.7) a possible technical
solution is to duplicate the decrease of each line [ into a product over all scales
smaller or equal to ¢;, since a geometric sum is of same order as its leading term.
Hence changing 6 one writes:

' . -6 Z Mt z—y|
Cl(z,y) < KM=+ osi<i (I1.1.22)

Then as integration is made with the help of the higher scale decay, a simple
supremum may be taken over the lower scales decay. This supremum becomes
available later to reconstruct tree decay of the right scale between the remaining
vertices of the Gi:, even after the ones of G% (save one) have been integrated
[FMRST1].

In spite of this technical complication, the inductive point of view is important
because it adapts better to constructive field theory and to the general philosophy
of the renormalization group, in which high frequencies should be integrated out
without information about lower ones.

One should emphasize that the exponential spatial decay (II.1.6) is not crucial
to the phase space machinery. In particular a scaled power decay of the type:

Cl(x—y) < KM?[1 + M|z — y|]? (I1.1.23)

is sufficient provided p > 4 (summability of the propagator is what really mat-
ters), and it becomes almost as convenient as exponential decay if p is very large.
Different type of decay may occur if different rules for the momentum slicing are
used; in particular one may prefer to slice with a C5° cutoff in momentum space,
because one can then bound with probability one norms on the field which contain
derivatives, like Sobolev norms, by ordinary norms like L2 norms. For such cutoffs
exponential decay in z-space is no longer possible, but power decay like (I1.1.23)
can still hold. An interesting exercise suggested to the reader is to rewrite in this
case the inductive proof sketched above; the replica trick in the simple form of
(I1.1.22) is no longer allowed!

Finally it is interesting to compare this multiscale proof with earlier proofs of
similar results by constructivists for ¢4 [Gl]. Here like in any superrenormalizable
theory one can exploit the fact that after some minimum size is attained a graph
has to be superficially convergent. But amplitudes for subgraphs can be viewed
as functions of the positions of their “border vertices” or as kernels for integral
operators. In superrenormalizable theories one can devise a way to break a big
graph into a lot of pieces of finite size, large enough so that the kernel for each
piece has a finite Hilbert-Schmidt norm. Using convex analysis for instance in
the form of some Schwarz inequalities a uniform bound similar to (II.1.9) can be
reached, the constant K being related to a supremum over the finite set of these
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typical pieces. This method and its extension to functional integrals was widely
used in the first period of constructive theory.

But no refinement of this method is going to work for a theory like ¢, because
Schwarz or other convex inequalities cannot be applied without losing a fraction of
the power counting, and this loss is fatal to a just renormalizable theory. Multiscale
chopping becomes the right tool, and once adopted it seems simpler to apply it
to the superrenormalizable case as well. We leave as an exercise to the reader to
check that in this superrenormalizable case the vertical decrease occurs for every
vertex from e,(u) all the way down to ¢ = 0; hence, as long as their decay is
concerned, dotted lines of decay may be drawn in this case from the highest line
at a vertex down to the bottom (the slice with ¢ = 0). This result will be used in
section IT1.1D to construct the ultraviolet limit of the ¢3 theory in a unit square.

Comparing the dotted lines to some sort of springs, the kind of intuition to
be gained from this exercise and the rest of this section is that for completely
convergent graphs, in the superrenormalizable case any subgraph is tied to the
“ground” of low energies (the ¢ = 0 slice) by springs attached to all its vertices,
whereas in the just renormalizable case it is tied only by springs at its “border
vertices”, and not directly to the ground; chains of such springs will ultimately
reach the ground at some true external lines of the full graph but the itinerary
for that may be arbitrarily long and complex, involving many intermediary other
subgraphs. Nevertheless in both cases the same uniform bound ultimately holds.
This intuitive picture is also very useful for the next section in which multiscale
slicing will lead us to an effective analysis of renormalization.
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I1.2 Renormalization theory for ¢}

We start with an overview of the situation and some examples before to
introduce the full formalism of renormalization, which unfortunately even in its
most recent and transparent versions still involves some heavy notations.

Our first remark is that the proof we gave of the “uniform Weinberg” theo-
rem also gives uniform bounds for many momentum assignments corresponding to
graphs which are no longer completely convergent. Indeed the only convergence
degrees which appear in a given p are the w(G%)’s. This leads us to call a mo-
mentum assignment p for a graph G convergent if w(g) > 0 for any g almost local
with respect to p. Then in the preceding section we have proved in fact:

AL =1 ). Agul < EM9 (11.2.1)

© convergent

Remark that this result, strictly speaking, is non trivial only for superficially
convergent G’s, otherwise there are no convergent assignments (since G itself is
always almost local, by our convention that the external lines of G are considered
to have index —1).

When some G% have N(G%) = 4 or 2 (0 is excluded if G is connected and
N(G) > 0) the proof of the last section breaks down. In the intuitive language
we used, the phase space machinery, instead of rewarding by a small factor for
each corresponding pair i and k becomes neutral (if N(G%) = 4) or even costs a
large factor (if N(G%) = 2). In the language of the renormalization group these
behaviors are called respectively marginal and relevant; they are the source of the
famous ultraviolet divergences.

What does the phase space point of view teach us about these divergences?
There are two important facts to remark, which pave the way for the full solution
of the problem of perturbative renormalization, and both facts appear particularly
clearly in the multiscale representation.

First the divergences arise from the appearance of superficially divergent (or
“divergent”, for short) almost local subgraphs G%’s. Their name has been chosen
to suggest that these objects are almost point-like from the “external world” point
of view. By this we mean that their internal lines, because of the decay (II.1.6)
may be thought as horizontal springs which constrain them to extend only over a
region in space typically of diameter of the order of M ~%. In contrast the external
lines which in an intuitive sense carry out information about these subgraphs
to the rest of the graph, are in a lower horizontal slice, hence they distinguish
only larger scales. So for them the G};’s appear almost point-like, and this effect
becomes stronger as the gap grows between the internal and external scales which
is precisely the source of ultraviolet divergences. It is therefore not surprising
that these divergences can be cancelled by comparing these contributions to the
ones of a purely local (exactly point-like) counterterm, which is precisely what
renormalization does.

The second and more subtle remark is that the divergent almost local sub-
graphs have obviously a forest structure inherited from the tree structure of the
inclusion relations of all G%’s. This simple remark is the key to the solution of
one of the historically most subtle and debated point in the theory of perturba-
tive renormalization, the one of “overlapping divergences”. It was early understood
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and later formalized by Bogoliubov and others [BP|[BS]|[Hel|[He2][Zim] that every
renormalization implemented by counterterms in the Lagrangian gives rise to con-
tributions in the amplitudes indexed by forests of connected divergent subgraphs.
This is not really difficult to grasp. Indeed local counterterms in the lagrangian
are like vertices; branching propagators on them will create contributions which
can match any structure of divergent disjoint subgraphs (see Fig.I1.2.1). Since the
definition of counterterms may be inductive one can imagine that their definition
includes earlier subtractions inside them, and in this way contributions may be
associated with stacks of subgraphs included one into the other as in Fig.I1.2.2.
Combining both ideas one gets contributions for each forest. But there is certainly
no way to associate a specific contribution which in the perturbative expansion
matches with two divergent overlapping subgraphs (i.e. with nontrivial intersec-
tion, see Fig.I1.2.3.). For many years experts worried about these overlapping
divergences, since there was no way to built a specific contribution for them from
local counterterms. The fact that the almost local subgraphs have forest structure
is precisely the solution to this point; “overlapping divergences” simply never oc-
cur simultaneously in phase space, hence there is no need to associate any specific
counterterm to them. This statement will be fully substantiated below.

After this general overview, we start by showing how the divergent “bubble”
graph of Fig.I.1.1 is renormalized by a local counterterm in the multiscale rep-
resentation. A subgraph g C G, after integration of its inside vertices (it may
have none) becomes a function g(x1, ..., x,,) of its v, border vertices (see Sect.l.4
for these notions). By translation invariance its Fourier transform is of the form
O(k1 + ... + ky,)g(k1 + ... + ky,_, ). The Zimmermann prescription for renormal-
izing it at 0 external momenta is to subtract from it a counterterm 7,9 which is
6(k1 + ... + ky, ) times a Taylor expansion of g around 0 momenta:

Gty otk )lico (IL.2.2)

&‘g‘

9
1
Z}J

where D(g) is the largest integer less than or equal to —w(g) the superficial degree
of divergence of g. Thanks to translation invariance, the formula does not really
depend on v.. Remark that the O-momentum subtraction scheme is valid only for
a massive theory; otherwise it would be ill defined, due to infrared singularities,
and some subtraction scale should be introduced by hand to represent the scale
of physical phenomena one is interested in. This is for instance the case for non-
abelian gauge theories, in which the gauge boson is massless. (A subtraction
scheme for massless ¢} and corresponding bounds may be found in [dACPR]).

In the multiscale representation we want to compute in x space; therefore we
should apply a subtraction operator 7 to the test function smearing g rather than
to g itself. This is possible through the formula:

/ng(xl, vy T, )O(T 1y ey Ty, )Xy o d Xy,

= /g(:vl,...,xUE)T;(ve)a(xl,...,xve)dxl...dxve (I1.2.3)
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where

T (ve)a(@1, ey Ty,) = ZO ﬁwa(m(t),...,xve(t))|t:0 (I1.2.4)
j=

with z;(t) = x,, + t(z; — x,,). Here v, really plays a distinguished réle, so that
there are several noncanonical ways of defining the “adjoint” T;(ve), one for each
border vertex v.; they are equally good.

Let us consider a bubble subgraph g in a bigger graph G. In this case w(g) = 0
and there are two border vertices at 1 and x5. Let us suppose to simplify that the
two internal lines are propagators of the same scale ¢ and that the four external
half-legs are four different propagators of the same scale 5. The test function a is
therefore the product C7(xy,y;)C7 (x1,y2)C7 (72, y3)C? (22, y4) and the subgraph
is almost local (divergent case) iff j < i (see Fig.I1.2.4).

As we saw in the last section there is no decay in ¢-j in this case, which would
allow to sum over the ¢ index, holding j fixed, hence there is a “logarithmic”
divergence in energy. To renormalize, we apply (1 —7;) to a, which gives the bare
amplitude minus its counterterm. The result may be written as the following sum:

[Cj(xh Y1) — Cj(ﬂf% yl)]Cj(il?h yz)Cj(ZUm ys)Cj(ﬂﬁz, Ya)

+C (w2, 51)[C7 (w1, y2) — C7 (2, 92)]C7 (w2, y3) C7 (22, Ya) (IL.2.5)

Each term contains exactly one difference which may be written as a Taylor re-
mainder. For instance:

1
. . d .
c’ (552,y1) - C](xlayl) = / dt%(ﬂ ($1 + t(CCQ - 331)791) (H~2~6)
0

Returning to the definition (I1.1.3-4) of C7 it is easy to derive the bound:

%Cj(:ﬂl +t(xe —x1),y1) < Koo — x1|M3je_‘SMJ|x1+t(x2_m1)_y1| (I1.2.7)
where K and ¢ are new constants, which may be taken slightly worse than those
of (IL.1.6). Hence the net effect of the derivation is to add to the usual bound a
factor M/ times the distance |vo — 21|. This distance, between the two border
vertices of the bubble may be then estimated by using a piece of the decay of the
two internal lines of the bubble. Remember that these lines have decay of scale
¢ > 7. Hence this gives a bound:

i 2 ’ i
|:L,2 _ I'1|6_26M |L172—L171| S 5_2\4—16—(3/2)6]\4 |CCQ—C(31 (11.2.8)

Similarly this internal decay can be used to replace |z + t(x2 — 1) — y1| in
(I1.2.7) by |z1 — y1|; then the integral over t in (I1.2.6) is just bounded by 1.
Altogether renormalization has delivered an extra factor M ~(=7) at the cost of
making constants like K or ¢ slightly worse. This does not change the nature of
the estimates, but the extra factor M ~(=7) has restored a vertical exponential
decrease previously missing; more concretely it allows now to sum over ¢ with
respect to j.
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In the generic case recall that the condition for a divergent subgraph g to be
almost local with respect to p hence to be a source of ultraviolet divergence, is
ig(p) > eg(p). For instance in the case of a bubble subgraph, the condition of
almost locality is simply that ¢4, the smallest of the two indices 7; and iy in p of
its internal lines, has to be larger than ey, the largest of the 4 indices ey, e, €3
and e4 in p of its external lines. For g a general divergent subgraph, assignments p
satisfying the condition i,(p) > eq4(p) are called dangerous (with respect to g) and
the ultraviolet divergence for g solely comes from such assignments. In the case
of a single bubble subgraph, the reader can easily extend the previous argument
to the sum over such dangerous assignments and restore the missing decay in
ig — €4 by subtracting again the counterterm 7,. In conclusion and anticipating a
bit, the divergence of the bubble is cancelled succesfully by a counterterm in the
Lagrangian of the form:

/dﬂfl [/ dvy Y C™ (21 — 22)C (21 — T2) e, (T1) Py (1) ey (1) e (1))
ig>eq

(I1.2.9)
where we recall that the random field ¢ of frequency i (respectively ¢;) is dis-
tributed according to the gaussian measure of covariance C* (respectively C; =
Zé'zo C7) (see (II.1.5)). We refer to pieces of counterterms like the one of (I1.2.9)
loosely as to “useful” counterterms, because they really kill a divergence. But
objects like (I1.2.9) cannot be considered local because of the restriction in the
sum, which makes the value of the counterterm dependent of the energy scale of
its external lines. If we want to preserve the formal locality of the Lagrangian, we
have to introduce the counterterm for g also in the case of assignments which are
not dangerous for g, hence satisfy the opposite condition in the sum (I1.2.9); we
call this piece of the counterterm the “useless” counterterm (it is “useless” from
the point of view of cancellation of divergences, not locality).

To combine useless counterterms with the bare amplitude in assignments
which are not dangerous does not make sense from the point of view of estimates,
essentially because subgraphs which are not };’s are not almost local from the
external point of view, and there is no interesting gain to compare them with a
completely local counterterm.

An interesting “naive” question is: for these assignments, where they do not
match, which one is biggest, the bare amplitude or the counterterm? A good
short answer is: “the counterterm”. To motivate this answer we remark that the
condition to be “useless”, i, < ey, puts an ultraviolet cutoff at scale e, on the
divergent sum over internal scales in the counterterm. This cutoff makes this sum
finite, but there is a subtle point: apart from the small breaking of scale invariance
due to the mass m in the propagator C', any counterterm for a marginal operator
(like ¢* here) is invariant by vertical translation. Hence when eq is large, the useless
counterterm has to behave asymptotically as e,. But there is no such effect for
the corresponding piece of the bare amplitude! This may seem a bit mysterious,
but the reader may convince himself of this important fact by checking again the
proof of the last section and its extension to (II.2.1) above: no linear divergence
in the summation over scales can occur for subgraphs which are not G};’s, because
such subgraphs simply never appear in the argument. We conclude that at least
for e, large the useless counterterm must be much larger than the corresponding
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bare contribution.

It is a bit uncomfortable that something which is useless from the point of view
of convergence dominates. It is not hard to guess more precisely to which problem
this phenomenon will lead us. Useless counterterms will not make amplitudes
divergent; they are big, but finite. But what will happen if a large number of
such big objects are inserted into a convergent bare amplitude or an amplitude
with a useful renormalization? The convergence we found for such amplitudes is
exponential in the space of momentum indices, hence it cannot be destroyed by
multiplying by any number of linear factors like those associated to the useless
counterterms. This is in essence why renormalization works and renormalized
amplitudes are finite. However since:

> M ~ K™l (I1.2.10)
e=0

we should expect the production of factorials in the number of useless countert-
erms, and this leads to a violation of the uniform bound (II.2.1) for renormalized
amplitudes. This violation, called the “renormalon” phenomenon, leads to new
difficulties if one tries to sum up renormalized perturbation theory. We have iden-
tified the useless counterterms as the source of this trouble, and this diagnosis
already suggests that the renormalized series are not the ones that one should try
to sum up, a point of view which will be developped in Sect.II.4-5.

Having completed this brief sketch of the situation, based on the sole example
of the bubble, we are ready to enter into the heart of renormalization to substanti-
ate the corresponding ideas with some proofs. We will focus on a proof of finiteness
of renormalized amplitudes with reasonable estimates which imply the existence
of a finite disk of analyticity for the Borel transform of the renormalized series.
This result, the “uniform BPH theorem” below, was first obtained in [dCR1] us-
ing the « space representation. Later it was rederived in several different ways
[GaNi][FMRS2|[FHRW][Hu]. As remarked already, a version like [Hu] may be the
most compact. But the one given here, in the style of [FMRS2] is well suited to
the extension to constructive theory. Small details have been improved so that the
final estimates are slightly better than the ones of [dCR1] or [FMRS2]

The general statement that ¢} is perturbatively renormalizable of course does
not mean simply that it is possible to make amplitudes finite by some subtraction
process, since this would be obvious for any theory in any dimension. It means
that the subtraction process must correspond solely to counterterms in the action
of the form ¢*, ¢? and 0,¢00" ¢, as the original ones in (I.3.1).

More precisely it means that in (I.3.1) we can replace the constants g, m? and
a of the theory by three formal power series in a renormalized coupling constant
gr, respectively g, + Z Cagl, m? + Z dng’ and a + Z engy such that the

n=2 =1 =2
perturbative expansion in g, of any Schwmger function is ﬁmte order by order. The

three corresponding renormalizations are called respectively coupling constant,
mass and wave function renormalization. (For connected amplitudes there is no
need to discuss the vacuum energy renormalization.) But counterterms c,, d,
or e, should diverge in the continuum limit, so that this is not yet a rigorous
definition. What is finally required is that for the well defined theory with cutoffs
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like (A, k) (1.3.9) (or (A, 0) (1.3.12)) there exist three such formal power series with
coefficients ¢, (A, k) d,,(A, k) and e, (A, k) such that the perturbative expansion for
this theory with cutoffs has a finite limit, order by order in g,, when both cutoffs
are removed.

In the standard litterature, renormalizability consists therefore of two steps:
the first one is the definition of the coefficients ¢,, d, and e,, at the heart of
which lies the Bogoliubov recursion; the second step is to expand the full theory
in powers of g, and to match the contributions obtained from the counterterms in
the action coming from this recursion with the bare contributions so that every
renormalized amplitude remains finite when cutoffs are removed. At the heart
of this second step is a technical tool, Zimmermann’s forest formula, which gives
for a given graph the complete list of counterterms which should be combined
with it; the forest formula appears therefore as a kind of inverse solution to the
Bogoliubov recursion, and it has the advantage of being global, not inductive.
Both tools unfortunately were invented before the multiscale representation and
do not take advantage of it in their design.

This defect is alleviated in the recent versions of the renormalizability theo-
rem [GaNi| [Gal] [FHRW] [Hu]; they neither focus on the Bogoliubov formula and
Zimmermann’s forest, nor on the individual renormalized graphs. To the decom-
position of the propagator into slices corresponds the decomposition of the field as
a sum of random variables (II.1.5); then integrating over the field in each slice, an
effective potential for the sum of slices lower than a given one is obtained and is
renormalized in an inductive way. This is a beautiful formalism, the most natural
from the point of view of the multiscale representation, and it avoids some of “the
combinatoric mess to relate the counterterms to the individual graphs” [Ros]. The
main technical combinatoric tool, the Gallavotti-Nicol6 tree, plays however the
same organizing role as Zimmermann forests or the tree structure of almost local
subgraphs; hence everybody may agree that the key technical aspect of renormal-
ization lies in such a structure (recall that a rooted tree minus its root is a forest,
so that the difference is extremely tiny; in particular it is simply a mistake induced
by their names to believe that forests are more complicated than trees...).

Here we refer the reader to the above litterature but choose to still explain
the basis of the Bogoliubov recursion and of the forest formula in the old fashioned
way. We do not want however to focus too much attention on them, first because
it is by now rather standard material, but also because in the broader context of
constructive theory, the renormalized series are not the relevant objects anyway;
they are rather a natural dead end to explore before to pass to the effective series
and their constructive generalizations.

The Bogoliubov induction is on the size of the graphs; it defines the coun-
terterms to be associated to each connected superficially divergent graph at order
n+1 when the same thing has been done up to order n. Most of the “combinatoric
mess” is simply due to the use of symmetry factors S(G) in formulas for graphs
and disappears if one returns instead to the notion of contraction schemes, which
we abbreviate in this section as CS. Also the presence of an ultraviolet cutoff is
necessary for well defined formulas and we assume it.

The best thing is before the general rule to gain some practice with simple
examples derived from the perturbation theory of the 4 point function, in which
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we do not consider graphs which contain subgraphs with N = 2 (called “bipeds”
in [dCR1]). The lowest-order divergent graph is then the bubble. It corresponds
to many CS, several for each of the three traditional s, ¢ and u channels of scatter-
ing theory. We introduce a counterterm in the Lagrangian cpuppbie¢* With cpupble
defined by the subtraction prescription; in the BPHZ scheme it is minus the value
of the bare amplitude at 0 momenta, but the principle of the Bogoliubov recursion
would be the same for other subtraction schemes. With this new term in the La-
grangian, the four point function becomes finite up to second order. What is less
obvious is that for each graph containing a single bubble subgraph, there is exactly
one associated subgraph containing a single vertex of type cpupble; the combina-
toric to check, at the level of CS, is simply the multinomial formula which allows to
choose a pair of vertices among n and to build the bubble with them. Similarly for
a graph with several disjoint bubbles one new contribution is generated for each
non empty subset of these bubbles, where each bubble in the subset is replaced by
Chubble- Again the combinatoric is checked through the multinomial formula for
the (unordered) choice of several pairs of vertices among n. For instance at third
order we get the contributions of Fig.I1.2.5.

Grouping together the contributions in the natural way we obtain partially
renormalized amplitudes A”®. They are pictured in a symbolic, but hopefully
transparent way in Fig.I1.2.6.

These partially renormalized amplitudes are not convergent when the cutoff is
removed, but partial subintegrations previously divergent are now convergent. We
introduce a new third order counterterm c¢ for each third order graph G which is
minus the value of AgR at 0 external momenta. With this new Lagrangian, the
amplitudes associated to the graphs of Fig.I1.2.5-6 become the renormalized ones
AE = AER 4 c¢q. Again after some use of multinomial coefficients new structures
appear at higher order which contain insertions of third order counterterms for
each possible set of reductions of a third order divergent subgraph to a single
vertex. This notion will be made soon more precise by the use of forests, but for
the moment we invite the reader to try still particular examples and to check the
multinomial coefficients.

We can now state the general principle of the Bogoliubov induction:

k
ca == Y 7aAasg ]| colp=o (I1.2.11)

gi,---,9k i=1

which means:

- For each possible family {¢} = {g1, ..., gx } of disjoint connected superficially
divergent subgraphs g; of GG, multiply the corresponding counterterms, which by
induction have been defined at an earlier stage,

- multiply for each such family by the bare amplitude for the “reduced graph”
G/{g} obtained by reducing each g; to a single vertex (of the correct type, i.e.
with N(g;) lines hooked to it),

- take minus the beginning of a Taylor expansion in the external momenta (at
the value 0 in this subtraction scheme) as indicated by the operator 7 and sum
over all possible such families, including the empty one.

We can remark that we may use other subtraction prescriptions, for we may
oversubtract; for instance in the ¢3 theory we could use the same scheme as for
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¢ and introduce counterterms for the coupling constant, although they would be
in this case finite as the cutoff is removed, and therefore not necessary from the
point of view of power counting. In this way the Bogoliubov recursion treats finite
or infinite renormalizations on the same footing.

The renormalized functional integral is then formally given by:

1 —W/Ag A+ gren) [ o' =(1/2)(m*+Y" gidn) [ 67— (1/2)(a+)_ gren) [ 8.00"¢
—e n n n Do
Z

(I1.2.12)
where ¢,, is given by the sum over graphs G with n vertices and 4 external legs
(the “quadrupeds”), of the counterterm cq of (I1.2.11); and d,, and e,, correspond
respectively to the first and the second subtraction of the Taylor operator 74 for
graphs G with n vertices and two external legs (the “bipeds”).

We insist on the purely formal character of the functional integral (I1.1.14). It
is worse than the bare functional integral (1.3.1), which becomes the well defined
functional integrals (I.3.9) or (I.3.12) when cutoffs are applied. Even with cutoffs,
(I1.1.14) remains ill defined because the infinite series ¢, d, and e, are formal
and not expected to be convergent.

If one accepts this enormous drawback, we are now in a position to check
Zimmermann'’s forest formula, which derives the renormalized perturbation series
from (I1.1.14). The result is given in terms of renormalized amplitudes in which
a certain set of subtractions is performed directly on the integrand, so that the
resulting integrals are absolutely convergent. The advantage is that this derivation,
although formal, works as well for the theory with and without ultraviolet cutoff.

The renormalized amplitudes A% in [Zim] are then similar to the bare am-
plitudes in momentum space (I1.4.18) but with the insertion of a renormalization
operator:

AL (p1y o PN) /RH ' — H vagpg (I1.2.13)

lEG

R = ZH —7,) (I1.2.14)

geF

The sum runs over all possible forests F of subgraphs which are connected and su-
perficially divergent, hence all possible forests of quadrupeds and bipeds, including
the empty one, which corresponds to the bare amplitude. We recall that a forest
is a set of subgraphs so that any two elements are either disjoint or included one
in the other. The reader is invited to look for some examples, for instance to the
twelve forests which contribute to the sum for the graph G in Fig.11.2.7.

The BPHZ scheme (I1.2.13-14) is characterized by the following normalization
conditions on the connected functions in momentum space:

C*(0,0,0,0) = —g, (I11.2.15)
1
20,2 _
d . a
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These conditions are often stated in terms of the vertex functions (one particle
irreducible amputated functions).

We sketch now the derivation of (I1.2.13-14) from (II.2.12). The fact that
forests are the solution to Bogoliubov’s recursion is quite obvious, because con-
sidering families of disjoint subgraphs among the members of a family of disjoint
subgraphs, etc... produces obviously forests. We have to check that each forest is
produced exactly once for each graph, at the level of Wick contractions. The cor-
responding combinatoric to check reduces to the multinomial formula for choosing
the sequence of n; vertices ¢ = 1,..., k among n in each maximal subgraph g; in the
forest (the “root” of each tree, from the point of view of the inclusion relation).
The combinatoric inside each maximal such subgraph has not to be checked since
it is treated automatically by the induction.

Therefore the last subtle point is to check that in formula (I1.2.13) the R
operator may be taken to act really on the integrand. This was accomplished in
[Zim]. In (II.2.13-14) the elementary operators 7, for instance for forests made
of a single subgraph ¢ are really given by (I[.2.2), namely for logarithmically
divergent subgraphs the operator 7, simply puts to zero their external momenta;
for more divergent subgraphs a Taylor expansion around zero momenta is taken
as in (I1.2.2). However when we want to combine these elementary operations into
products over subgraphs of a forest some technical ambiguities have to be fixed, and
this makes the true definition of the R operator in (I1.2.13-14) rather complicated.
The product of the Taylor operators (I1.2.2) has to be applied in the natural order
of the forest, starting from the smallest graphs (the “leaves”). But one has also in
fact to eliminate the ¢ functions in (I1.2.13) by choosing a momentum routing rule
which must be “admissible”; then one can define the action of the R operator on
the reduced integrand and check that the result is independent of the admissible
routing chosen. The insertion of the R operator leads in the end to well defined
absolutely convergent integrals [Zim)].

These complications were bypassed in the parametric representation, where
Bergere, Lam and Zuber [BL],[BZ] proved that there is an equivalent but com-
pletely canonical definition of the R operator, which also acts by direct subtrac-
tions on the integrand, and makes the Feynman integrals absolutely convergent,
provided one simply works in the « representation (1.4.19) rather than in the mo-
mentum representation (I1.4.18). Moreover the Taylor operators defined in « space
may be shown to commute precisely when the graphs belong to a common forest,
so that there is no ordering ambiguity in formula (II.1.18) in this case. This for-
malism, which was used in [dCR1][Ril], is certainly the most elegant and compact
one for a purely perturbative definition of renormalization.

However we want neither to work in the momentum, nor in the parametric
representation, but in phase space. Hence we will define and use below a third
equivalent version in which the R operator acts in z-space. In this formalism,
which was developed in [FMRS2], the momentum space Taylor operations 7¢
must be replaced by z-space “adjoints” 7(, which generalize (I1.2.3-4) and whose
exact definition is given in the next section. This definition, like (I1.2.3-4), implies
the non-canonical choice of one particular vertex v, among the border vertices of
each subgraph of a given forest; there is also a condition that this non-canonical
choice must be done coherently throughout the forest, which can be considered a
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dual of the admissibility condition on Zimmermann’s routings of momenta. This
sounds like a backward-step with respect to the « space formalism of [BL][BZ];
but the advantage is that this formalism is fully compatible with our multiscale
representation; therefore it can be extended naturally to constructive field theory.

Starting from such a well defined formula for renormalized amplitudes, our
goal is to show not only that these amplitudes are indeed finite (the “BPH the-
orem”) but again to find also good uniform bounds at large order. The simplest
such bound is obtained for amplitudes with fixed external momenta, but of course
it is possible to derive analog results for amplitudes with external points smoothed
against given test functions (see H1-H3 in the preceding section). Let us define
f(G) as the supremum over all forests appearing in (I1.2.14) of |F|, the number
of subgraphs in F. It is easy to check that f(G) < n(G). As remarked already, a
bound similar to (I1.1.9) is hopeless because of the renormalon factorials. Instead
we want to prove:

Theorem 11.2.1: The BPH uniform theorem
There exists some constant K such that:

AR (p1y ey pv) < K™ F(G)I(L + sup p;i )Y (I1.2.18)
J

where N is a function of N(G) which may be taken to be N = N(G)/2 if N > 6,
N(G)=1if N(G) =4 and N(G) =3if N(G) =2

This bound is more accurate than those of [ICR1] and [FMRS2]| as far as the
external momenta dependence is concerned. (I1.2.18) should not be considered to
reflect the true large momentum behavior of Iff. For quadrupeds for instance one
may establish as an exercise a more precise bound like

(@)
> (£(G) = k)![Log(1 + sup |p;|)]* (11.2.19)
k=1

for the right hand side of (I1.2.18).

Nevertheless, the bound (I1.2.18) for the first time gives a radius of conver-
gence in the Borel plane which is uniform in the external momenta. This is an
improvenent on [FMRS2] due to our use of the replica trick (I.1.22). Even with-
out this trick it should be possible to get a Borel radius uniform in the external
momenta, but the analysis is mre tedious and we do not try it here.

When later combined with an analysis of the number of graphs with fixed
n and f, (IL.2.18) leads to a finite “Borel radius” of the renormalized series, and
one which does not shrink at large momenta like those of [dCR1|, [FMRS2]. An
improved analysis sketched in Sect.I1.6 even leads to bounds which give the optimal
expected radius of convergence in the Borel plane. For the moment however we
do not try to find optimal constants K in (I1.2.18).

The next section is devoted to a full proof of the theorem. For pedagogical
reasons it is divided in two steps; the proof is given first for graphs without bipeds
(connected 2 point subgraphs), then in the general case. Indeed bipeds of ¢}
are the source of technical complications. To avoid redundant subtractions which
result in worse bounds, it is natural to push for them the analysis beyond the
level of connected subgraphs, to the level of one-particle irreducible subgraphs.
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The natural forests associated with this notion are the forests of “closed graphs”
[dCR1]. However the corresponding technicalities divert the attention from the
core of the proof, which appears more clearly in the biped-free case. Hence the
hope is that with this presentation, the reader will not skip at least the first part
of the next section.
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I1.3 Proof of the uniform BPH theorem
A. The biped-free case

For the proof to work in the multiscale representation, the key point is to
extract additional “index space” decay when some almost local subgraphs are di-
vergent; in the biped free case they can only be quadrupeds. This decay should be
extracted as in the example of the bubble subgraph treated in the preceding sec-
tion. We need to give first the precise definition of the subtraction operators which
are the equivalents in z-space of Zimmermann’s operators in momentum space; in
other words we must give the rule for “adjoints” 7 which generalize (I1.2.3-4). Let
us fix some forest of quadrupeds F. We want to define the equivalent of the prod-
uct [],ep 74 acting on the momentum space integrand 1;[(})12 +m?) " 603 evapr)

v

as a product [] g 77 (ve(g)), acting on the x-space integrand , so that the renor-

malized amplitudes computed with the xz-space 7* operators agree with the ones

computed with Zimmermann’s 7 operators. (Since C(z,y) is ill defined at coin-

ciding points, we define in fact the 7* operators as acting always on a regularized

integrand [ Cx(x;,y;), and the preceding statement will be true only in the limit
l

k — 00.) The definition of the 7* operators simplifies in our case because we meet
only quadrupeds, for which w = 0. Therefore the sum (I1.2.2) reduces to a single
term, the 0 momentum value. We show now that in z-space, the equivalent of
taking external momenta to 0 is to integrate over the position of vertices, save one
(which corresponds to global translation invariance, hence to the overall 6 function
of momentum conservation for the subgraph in Zimmermann’s scheme). Hence we
must do a consistent choice for all the subgraphs g of a given forest of quadrupeds
F of a preferred or “fixed” border-vertex v.(g,F) and define the corresponding
7, (ve(g, F)) operators. The following rule is a correct one (not unique).

Choose a border vertex arbitrarily for any of the maximal subgraphs of F
(the trunks), but one which, if possible, is also a border vertex for G itself. Then
choose inductively the other border vertices according to the natural rule: if ¢’ is
the immediate ancestor of g in the forest, which we note ¢’ = Br(g) and v.(¢’, F)
is also a border vertex of g, choose v.(g,F) = v.(g’',F). If it is not the case but
there are some border vertices of g which are also border vertices of ¢’, choose
ve(g, F) among them; otherwise choose v.(g,F) arbitrarily.

With this simple rule we may picture in a graphic way our definition of the
action of the product [] 7, (ve(g,F)) on the integrand [] Cy(x,y) ]]y[ el 2 Pi%s

€F l =1
Each 7 operation simpgly changes every external line C'(x, z) of g int(i C (24, (g)1 %)
which means that it moves each external line of g to attach it to the single border
vertex v.(g, F). These operations are consistent and commute because whenever
g C ¢’ our rule ensures that an external line common to g and ¢’ is never moved
by the 7, operator to an inside vertex of g’ (which would be bad because in the
definition of the 7, operator the inside vertices of g’ have to be integrated out
and one could not apply both the 7 and 7,+ operators). With our rule the

g
product [] 7, (ve(g, F)) results in a well defined set of “moves” for the lines of
g€eFR

g. Taken literally as in Fig.I.3.1 these moves would lead to unpleasant vertices
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with more than 4 lines attached to them so it is better to view the 7* operators
as creating thick “reduction” vertices which are then expanded separately to show
their “inside” (the subgraph to which they correspond) as in Fig.I1.3.2 where
arrows show which “inside” is associated with which vertex.

Returning to phase space, we apply the decomposition (I1.1.8) into momentum
assignments and obtain:

N
Ag(pl, ey DN) = Z / Hd:UURHC”(“)(JUl,yl) H e'Pi T (I1.3.1)
7 v l j=1

R=> []l-7(ve(g.F))] (11.3.2)

g€eF

(for simplicity we may often forget to write the dependence in v.(g,F)).

Suppose now that we have a fixed assignment p. The basic problem is to
organize the forests appearing in the definitions (I1.2.17) or (II.3.2) of R according
to the fundamental tree structure induced by p, namely the tree of the almost local

275. The almost local divergent subgraphs form a particularly obvious subforest
of this tree, which we call D,, the “dangerous” forest for p (since we remarked
already at length that it is responsible for all the ultraviolet divergences in the
assignment f). Recalling (I1.1.12), this forest may be characterized as the set
of quadrupeds g with i,(p) > eg(p) (see (I1.1.10-11) for the definition of these
indices). In (II.3.2) the sum over all forests which are subforests of D, reconstructs
exactly the operator [ geD, (1 —7;). Intuitively we may guess that this is exactly
what we need to restore vertical (index space) decay and to cure the ultraviolet
divergences. But why are there other forests in (I.3.2), and what should we do
with them?

We saw that graphically the 77 operators extract the subgraph g from G
and replace it by a reduction vertex. Hence intuitively these operators should
prevent any contact across the boundary of g. Therefore when an operator 7,
or more precisely a forest of such operators is applied we should try to define a
new version of D, relative to it, which respects this constraint of no information
passing through any boundary of any g. This natural idea is formalized as follows.

Given any quadruped forest F and any g compatible with it (such that FUg is
still a forest) we define Bg(g) as the ancestor of g in FUG and Ar(g) as Up.g5nerh.

Then for p and F given, we define two subforests of F', called respectively the
safe and dangerous parts of F. The safe part S, (F) of F is the complement in F
of the dangerous part D, (F), which is defined by:

g€ D,(F) e geF, iy(F)> ey (F) (I1.3.3)

where
ig(F) = min{i; ()|l € g — Ar(9)} (I1.3.4)
eq(F) = max{i;(pn)|l € E(g) N Br(g)} (I1.3.5)
E(g) being the set of external lines of ¢ internal in G. E(g) N Bg(g) is empty only
when g = G, in which case we set e,(F) = —1. Remark that these definitions

indeed generalize (I1.1.10-11) since iy = i4(0) and e, = e4(0). Remark also that
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the dangerous graphs in D, (F) are exactly those g in F such that g/Ar(g) is a
connected component of [Br(g)/Ar(g)]*(1) for some i, hence they generalize the
notion of almost locality to the case of the reduced graph Br(g)/Ar(g). We recall
that the notation g/h means that in g every connected component of h has been
reduced to a single vertex ,and that ¢g®(u) = {l € gli;(p) > i}.

Obviously if F; C Fy we have:

ig(Fl) < Zg(FQ) ; eg(Fl) > eg(Fg) Vg eF, (1136)
We have also for any g € F:

Lemma II1.3.1
iy (F) = iy(S,(F) U {g}) (IL3.7)

4(F) = ¢ (S,(F) U {g}) (IL3.8)

Proof [FMRS2]

Suppose Ag, (r)(9) C Ar(g) and let Iy be any line in Ar(g)/As,F)(g). Let
dy C dy... C d, be the set of all dangerous elements of F containing [, and
contained in g = d,4;1. For each k = 0,...,n there must exist a line l;4; which
is an external line of dj and is contained in diyq. Since each dj is dangerous,
wer> With I, 11 € g/Ap. Hence Iy cannot bear the minimal
index in g/Ag, (r)(g), which proves (IL.3.7).

Similarly if E(g)NBr(g) C E(9)NBs, ¥)(9), let lo be any line in the difference,
and [; be any line in F(g) N Br(g). Let d be the largest element of F such that
lo € E(d) and g Cd C Bg,(r)(g)- d must be dangerous for F so using (II.3.8):

ilk > ilk+17 hence igo > 1

ilo < ed(F) < Zd(F) = Zd(SM(F) U {d}) <y (1139)

hence Iy cannot provide the maximum in E(g) N Bs, (r)(9)-
As a consequence of the Lemma, S, (S,(F)) = S,(F) and the set F”(G) of
all quadruped forests decomposes according to classes under the action of the S,
projector:
FP(G) = Ups, m)=r {F'[S.(F') = F} (11.3.10)

The forests F satisfying S, (F) = F form the set Safe(y) of the so called safe
forests (with respect to p).

For any such safe forest F, the next lemma characterizes completely the equiv-
alence class {F’ € FP(G)|S,(F') = F} in terms of the forest:

H,(F) = {g C G|g quadruped compatible with F and g € D,(F U {g})}
(IL3.11)

Lemma II.3.2 For any F € Safe(u) one has:
FUH,(F) € FP(G) (I1.3.12a)

VF' € FP(G),S,(F)=F < FCF CFUH,F) (11.3.120)
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Proof [FMRS2]

(a) We have to show that two subgraphs g, ¢’ in H,(F) cannot overlap,
i.e. have a nontrivial intersection. If they do, since g is connected, g — ¢ must
contain a line [ which is internal for g and external for ¢’; this line [ cannot be
in Ap(g) (otherwise ¢’ would not be compatible with F) and must be in Bg(g’)
(by compatibility of g with F). Similarly ¢’ must contain a line I’ in ¢'/Ar(g’) N
E(g) N Br(g). This enforces a contradiction:

() > ig(FU{g}) > eg(FU{g}) > i (1) ; iv () > igr (FU{g'}) > eg'(FU{g(’}) > Z'z)(u)
11.3.13
(b) < Note first that if Fy, Fy € FP(G) and F; C Fy, then by (I1.3.6):

g €D, (Fy) = g € D,(Fy) (I1.3.14)

Henceifg € F'—F = F'NnH,(F), then g € D,(FU{g}) C D,(F'). SoS,(F') CF.
If this inclusion was a strict one, it would mean that there is a ¢ € F with
g € D,(F’), hence using Lemma II.3.1:

ig(F') > e,(F') = e4(Su(F Uyg)) (I1.3.15)
and using (I1.3.6) and the fact that F = S, (F) :
a(Su(F' U g)) 2 g (F) > iy(F) = ity () (11.3.16)

Combining (I1.3.15) and (I1.3.16), we see that the line [y must have collapsed under
reduction of Ag/(g) but not under reduction of Ag(g). Therefore [y must belong to
some h in H,(F) with h C g, but cannot belong to Ag(g). Since hNAr(g) = Ar(h)
we have:

7:50 (,u) = min{il|l S h/AF(h)} > max{il|l € E(h) N BF(h)} (11317)

This contradicts the last part of (II1.3.16) because E(h) must contain a line that
is internal to Bpyu(sy(h) C g (or else Bpygsy(h) would not be connected) and this
line cannot be in Ag(g), since h is compatible with F and is not contained in

Ar(9)-
= If S, (F') = F then F C F’ and using Lemma II.3.1:

geF —-F=9gecD,(F)=9geD, (S, (F)U{g})=9gecH,(F) (IL3.18)

Lemma II.3.2 allows to reorganize the R operator in the assignment p as:

R= > [ ] a-=) (I1.3.19)

FeSafe(u) geF heH, (F)

This is a beautiful rearrangement (different for each p) because the product
IT gEHu(F)(l — 7,) will provide the desired cancellations for dangerous subgraphs
within each particular counterterm of F and within G/F itself, and the countert-
erms of F themselves, corresponding to safe subgraphs, will have some external

scale acting as a cutoff.
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To establish the uniform BPH theorem, we write (IL.3.1) in the form:

Af= > Afg (I.3.20)
FEFDP(Q)

AR = Y /Hdmv 1)

n|FeSafe(u) v g€F

N
T a-=)]lc" ™ (@, ] er™ (I1.3.21)

h€H,, (F) ! j=1
and we give a bound of the form (I1.2.18) on Ag’F for every fixed F € FP(G).
Then we can conclude because it has been shown ([dCR1], Lemma A.2) that the
number of connected divergent forests in a biped-free ¢} graph is at most gn(@),
(Hint: bound first the number of maximal such forests. The only way quadrupeds
may overlap in a biped-free graph is shown in the left of Fig.I1.3.3 and by writing
the 2-particle reducibility structure of G as in the right of Fig.I1.3.3, one derives

an inductive bound:

n—1
dp < dydn_y (11.3.22)
p=1

for the maximal number d,, of such maximal forests over graphs G with n(G) =n
(with initial condition dy = 1). Hence d,, < 4™ and one can conclude).

We proceed to evaluate the action of the 7* and (1—7%) operators in (II.3.21).
The 7 operators are applied first, for every g € F. They attach all external lines of
g internal in Br(g) to a single reduction vertex whose position is v.(g, FUH,(F)),
and which we abbreviate as v.(g) in what follows (see Fig I1.3.1-2). Then we apply
the (1 — 7;¥) operators for each h € H,(F) and like in (II.2.5) we decompose the
corresponding difference of products of external propagators into a sum of at most
three terms, each of which contains exactly one difference concerning a single
external propagator taken at two different end arguments. The generic case is:

4 4

H Clzi, yi) — H Clz1,y:i) = Clz1,51)-

=1 =1

4

Z H C(xj,y;)[Clwis yi) — Cw1,y3)] H C(x1,y5) (IL.3.23)

i=2 2<j<i i<j<4
Remark that the line bearing the difference must be in E(h) N Bgr(h), because
common external lines for h and Bg(h) are all attached to the same vertex after
the TEF(h) operation, hence the corresponding difference in (I1.3.23) gives 0 for
this case and can be discarded.
Therefore the product of the (1 — 7;¥) operators factorizes as

It I a-=l

geFU{G} heH,(F)|Br(h)=g

each internal product acting only in g/Ap(g). Finally when we compute such a
product, any difference C(x1,y)—C(z2,y) created at one end of a line by a (1—7)
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operator cannot be modified by an other (1—7;,). This is because with our rule for
the choice of external vertices, the 7/, operator would either let both C(x,y) and
C(x2,y) untouched or move them both to C(x,, (4, ¥), and the difference would
give 0 and can be discarded. Of course this concerns only one given end of a line,
and at the other end an other difference may appear (this would be the case for
Fig.I1.3.1-2). Hence after all operators 7, and (1—7;) have been applied we get an
integrand similar to the initial one, with ordinary lines (some ends of which may
have been moved to some v.(g) vertex), and lines bearing one difference at one
end or two differences, one at both ends. The lines with one difference are then
replaced by the interpolating formula (I1.2.6) and the lines with two differences by
a similar formula:

Ci(x,y) — C(u,y) — C(x, 2) + C*(u, 2)

1 gt

d d _,

:/ / dtidty——C"(x + t1(u— ),y + ta(y — 2)) (I1.3.24)
0 0 dtldtQ

Some of the lines bearing a (single!) difference may be true external lines of
G there is one such line if N(G) = 4 and at most N(G)/2 if N(G) > 6 (a pair
of external lines of GG could be external to some quadruped h, and one line in the
pair could bear a difference; this is not true for single lines, because the rule in
this case chooses the corresponding border vertex of h to be the fixed one v.(h)
and this external line does not bear any difference).

We evaluate interpolating lines of the type (I1.2.6) by (I1.2.7), and lines of the
type (I1.3.24), by a similar estimate, based on representation (II.1.3-5). A line of
index 4 bearing 0, 1 or 2 differences will therefore have power counting M2, M
or M4 and 0, 1 or 2 corresponding multiplicative distances (like |x — ul||y — z| for
(I1.3.24)); it will have also interpolating decay (see (I1.2.7). Before to integrate
over the positions of vertices we have to bound these distance factors and replace
the interpolating decays by ordinary ones, like in (I1.2.8). This must be done by
using the decay of the internal lines connecting = to u (or y to z), which must be
of higher scales for harvesting some net gain.

If the difference | — u| to bound has been created by a (1 — 7;°) operator
with Bp(h) = g, the line bearing the difference has index at most ey (F). The
internal decay to use takes place entirely within g/Ag(g). But h belongs to H,,(F),
which means that h/Ag(h) is a connected component of (g/Ar(g))* for i = i (F).
Therefore using the triangular inequality and the decay of the internal lines of
h/Ag(h), we can bound the difference in external arguments by KM ~*(F) as in
(I1.2.8); combining this with the extra power counting factor of the line bearing
the difference results in a net gain of at least:

M (F)—en(F)] (11.3.25)

We can also replace the interpolating decay in |x + t(u — x) — y| by the regular
one |xr — y| and still keep a fraction of the internal decay of h/Ag(h) for later
use. But a subtlety arises: what if several distance factors |z — uyl, |r2 — us]
etc.... made use of the decay of the same internal lines? In this case they would
correspond to graphs hy, heo,..., which must be ordered by inclusion, hence have
in, (F) > ip,(F) > .... But we can duplicate the decay of any internal line by
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formula (I1.1.22) before using it. With this trick, different distance factors will
always use different copies of any given internal decay, which solves the problem.

There is no dependence on interpolating parameters ¢ any more and we can
therefore bound the corresponding integrals by 1. This achieves the preparation
of the integrand, and the rest will be very similar to Sect.Il.1. We are ready to
perform the integral over the positions of vertices by choosing a spanning tree
T whose restriction to g/Ag(g) is still a spanning tree T, of g/Ag(g) for each
g € FU{G}; this is possible because of the tree structure of FU{G}. Moreover we
require that for each 7, k the restriction of T, to (g/Ar(g)); is again a spanning tree
of (g/Ar(g))t. This is the natural generalization of the choice of T in Sect.II.1,
and is possible because of the tree structure of the (g/Ar(g))% for each g. Then the
spatial integration inside each g/Ap(g) goes exactly as for the full G in Sect.IL.1,
and delivers altogether the factor

H H M« (9/AR(9))], (I1.3.26)

geFU{G} (i,k)

Moreover the combined effect of the extra factors (I1.3.25) adds to this estimate a
factor which is at worst:

[[ arlinEmentl (I1.3.27)
heH, (F)

More precisely we must take into account the case where external lines of G bear
differences, where we write [e”?i* — ei%| < (1 + sup; |p;|)|x — u| instead of the
regular estimate. |r — ul is a distance factor similar to the previous one, and the
bound after integration of internal vertices is therefore:

AE (o1, p) < (L4 sup i)Y Y [T [J M rarani
J plFeSafe(u)  geFU{G} (i,k)

(I1.3.28)
where
W'((9/Ar(9))k) = sup{L,w((9/Ar(9))i)} (I1.3.29)
except when g € F and (g/Ar(9)); = 9/Ar(g), in which case:
W'((9/Ar(9))k) = w((9/Ar(9))}) = 0 (I1.3.30)

Let imax(pt) be the largest index appearing in the assignment p. From half
of the index space decay in (I1.3.28) we can extract a factor M ~%max(i) patching
together the internal vertical decays inside each g/Ar(g), g € F U {G} with the
condition i4(F) < e,(F) for each g € F. Then with the rest of the decay we can
sum over every assignment of each g/Ap(g) as in Sect IL.1, provided one index
of g/Ar(g) for each g € F is kept fixed; indeed (II.3.30) implies overall vertical
translation invariance for each g/Ag(g), g € F. The result is bounded by:

H Kn(g/AF(Q)) S KQn(G) (11331)
geFU{G}
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Each “translation invariant” sum over the fixed index of a given g/Ag(g) is nev-
ertheless obviously bounded by imax(pt), hence the corresponding sums combined
are bounded by:

Z (imax(u))|F|M—5imax(M) < |F|IK|F| (11332)

Tmax (1)

Combining (I1.3.28) (11.3.31) and (I1.3.32) achieves the proof of Theorem I1.2.1
in the biped free case.

In fact this proof again achieves more than the theorem it is designed for. It
is indeed worth to consider as a separate theorem the particular case of an empty
F, because the empty forest is the only safe forest common to all assignments, and
by (I1.3.32) there is no factorial in the estimates for it. Since H,(0) = D, we
have proved that in the biped free case:

Theorem 11.3.1: Uniform bound for usefully renormalized amplitudes

N
|AZE (p1, ..o pn)| = |Z/Hd:cv H (1—17) HC”(“)(ivl,yz) H P |
w v

heD, l j=1

< (1 +sup |pj|)NK”(G) (I1.3.33)
j

AgR is a piece of the renormalized amplitude, called the “usefully” renor-
malized amplitude because it has no insertion of “useless” counterterms which
correspond to the elements of safe forests. Theorem II1.3.1 shows that it does not
contain any renormalon effect. Hence we can conclude, as announced in the previ-
ous section, that the renormalon effects are solely due to the useless counterterms.

We give now the proof of the BPH uniform theorem (Theorem II1.2.1) in the
general case where bipeds are present. We will also obtain the generalization of
Theorem II1.3.1, proving that it also holds with bipeds. We will not rephrase what
is similar to the above analysis but concentrate on the new technicalities created
by the bipeds.

B. The general case, with bipeds

To get a reasonably accurate bound when bipeds are present, we must trim
some redundant subtractions in the definition (I1.2.14) of the R operator due to
one particle reducible divergent graphs. Indeed for a graph with only n vertices
like the one of Fig.I1.3.4 there are forests of connected divergent subgraphs with
about 3n/2 elements, and the corresponding estimate (I1.2.18) would not even
allow a finite disk of analyticity in the Borel plane (see Sect.IL.6).

We recall that a subgraph was called proper or 1PI, if it cannot be broken
into two disconnected pieces by cutting a single line. A quadruped (connected
subgraph ¢ with N(gq) = 4) is called open if it is proper and there exists a proper
biped b D ¢ such that both border vertices of b are border vertices of ¢q. b is then
called the closure ¢* of ¢ and is obtained by adding to ¢ a line or a chain of proper
bipeds between these two vertices (see Fig.I1.3.5). More generally a subgraph g is
called closed iff:

Vq open quadruped ,q Cg=¢" Cyg
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and the closure g* of a proper subgraph g is the smallest closed subgraph containing
it [dCR1]. This definition is consistent with the first one when ¢ is a quadruped.

Then we can restrict, in the definition (I1.2.14) of the R operator the sum
to run over forests of closed divergent subgraphs (in short “closed forests”). The
fact that subtractions for one particle reducible subgraphs are redundant is rather
standard (see for example [BL]); it follows intuitively from the observation that
putting to 0 the external momenta of a graph also puts to 0 the external momenta
of its proper parts by momentum conservation. The fact that subtractions for
open quadrupeds are redundant is less well known but can be grasped as follows.
Let ¢ be an open quadruped and b = ¢* be its closure. Then (1 — 7,)7, = 0 since
the 7, operator hooks both external lines of b to the same reduction vertex, and it
is therefore not necessary to introduce counterterms for both ¢ and b = ¢*. From
this idea and some induction, one can restrict the sum over forests in (I1.2.14) to
the closed forests without actually changing the action of R on a graph ([dCR1],
Lemma I1.3). As a general definition of the factor f(G) appearing in Theorem II.2
we take the supremum over all closed forests F of |F|, the number of elements in
F*.

For any given closed forest F and assignment u, we introduce relative indices
which generalize (11.3.4)-(11.3.5):

ig(F) = m}?xmin{il(u)ﬂ € h/Ar(g)} (I1.3.34)

where the max is taken over all A compatible with F which obey h* = ¢ and
such that h/Ag(g) is a proper component of (g/Ar(g))? for some i. The h which
realizes this maximum is called I7(F). We define ef as:

eg(F) = max{i/(p)|l € E(9) N Bsew)(9)} if N(g) =4
eg(F) = min{i/(p)[l € E(g) N Bs: (r)(9)} if N(g) =2 (11.3.35)

where SZ(F) is defined inductively, starting from the largest graphs in F towards
the smallest ones, by the condition:

g € S5(F) & ¢(F) > i¢(F) (IL.3.36)

g € DS(F) & e5(F) < iS(F) (11.3.37)

Since the definition of Sf(F) is inductive there is no logical loophole between
(I1.3.35) and (I1.3.36).

The lemmas necessary to classify the forests are the following generalizations
of Lemmas 11.3.1-2:

Lemma I1.3.3 For F a closed forest of G and g € F:
ig(SL(F)U{g}) = ig(F) (11.3.38)

e (S5(F) U {g}) = e5(F) (11.3.39)

* This is not the definition of f(G) in [dCR1], and the factorial bound of [dCR1]
is therefore not optimal in this respect.
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S¢(S¢(F)) = S(F) (I1.3.40)

Furthermore for F a safe forest, i.e. such that S¢(F) = F, we define H{,(F) =
{9 € G, g proper closed divergent subgraph compatible with F, and g € D¢ (F U

{9})}. Then:

Lemma II.3.4 Lemma I1.3.2 still holds with the generalized definitions S7,(F)
and H,(F) replacing the former S,(F) and H,,(F).

Sketch of proof (for a detailed proof of these two Lemmas we refer to [dCR1]).
(I1.3.39) is obvious from definition (I1.3.35), and with (I1.3.38) it implies (II.3.40).
(I1.3.38) is non-trivial. By induction, it is enough to show that for any ¢’ # ¢,¢’ €
D¢, (F), we have ig(F) = ig(F — {g'}). This is obvious except when g = Br(g’).
In this last case we remark first that hg = IJ(F — {g'}) satisfies all the conditions
to appear on the list over which the max is taken in (I1.3.34) for i (F). Since
ho/Ar(g) C ho/Ap_{g'}, we have the inequality if (F) > 5 (F—{g'}). The opposite
inequality requires some care. An easy case is when I(F) is disjoint from g'; then
it appears also in the list for F — {¢’} and one concludes easily. The last possibility
is g' C I(F) (since I$(F) is compatible with F). In this case I (F) has to contain
at least two external legs of ¢’, hence

i°(F) < e, (F) < i<, (F) (IL3.41)

and hy = Ig(F) — [¢g' — I¢,(F)] is in the list over which a maximum is taken in
the definition (I1.3.34) of ig(F — {g’}). Hence we conclude also that if(F) <
ig(F —{g'}), which achieves the proof of (IL.3.38).

Remark that Lemma I1.3.3 remains also true if we modify slightly the defi-
nition of i (F) when g/Ap(g) is the bubble graph of Fig I.1.1, defining it in this
special case by:

i(F) = max{iy, i»} (11.3.42)

where i and iy are the two indices in p of the two lines of g/Ap(g). This small
change is not fundamental at all but is necessary to have a nice rule for the “bubble
resummations” of [DFR] which will be briefly considerd in Sect.I1.6.* The reason
for which renormalization still works with this definition is that a single line in the
bubble is enough to ensure spatial decay between the two border vertices of the
bubble.

For more general graphs the real constraint on iy to ensure such a decay
is that there is at least a spanning tree of g/Ap(g) made of lines with indices
higher or equal to ig(F); both (I1.3.34) and (IL.3.42) satisfy this rule, as does

the construction in [GaNi]; clearly there remains some flexibility in the choice of
igs
the expansions of constructive theory, in which the mechanism of convergence is

and some details are a matter of convenience. This remark applies also to

fundamental but some particular technical details are not.

* It has also some advantages over the “2nd max” definition for eg that the
curious reader will find in [Ril], [DFR]; this definition was introduced also solely
to allow explicit bubble resummations, but is worse than the simple rule (I1.3.42).
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Lemmas I1.3.3-4 allow to reorganize the operator R exactly as in (I.3.19).
Also the number of closed divergent forests in a graph is still bounded by 8™(%)
([ACR1], Lemma A.2). Hence we can again restrict our attention to a single A g
in (I1.3.20).

We must make precise the choice of v.(g) when g is a biped. Recall that in
this case, renormalization is performed (i.e. a factor (1 —7) appears in (I1.3.19))
even when one of the two external legs of the biped has an index bigger than the
internal index ij (see (I1.3.35)). Hence we have to ensure that the 7, operator in

g

this case applies to the external leg of the biped with lowest index e¢

g» otherwise
there would be no net gain. This can be done by adding to our previous rule
for choosing the v.(g) vertices the prescription that when g is a biped the fixed
vertex ve(g) is the one to which the leg of highest index in p is hooked. This
prescription does not interfere with the former rules because a border-vertex of a
proper biped cannot be also border-vertex of any other proper closed divergent
subgraph containing it, hence the choice of the fixed vertex for it was arbitrary in
the former rules.

We have also to supply a new formula for the action of 7; when g is a biped;
since w(g) = —2 in this case, the Taylor expansion at 0 momenta is pushed to
second order. When the corresponding adjoints are applied to the external propa-
gators C'(x,u)C(y, z) of the biped, with = x,,_(,) and y the position of the other
border vertex of g, one obtains:

(0@, 2) = Cleu){Cla, ) + (y — ) o (2, 2)
%(y — )iy — o) a:fuaoxv (2, 2)} (I1.3.43)

where partial derivatives apply to the first argument x of C(x,z). By a parity
argument the second term in the sum (I1.3.43) vanishes when integrated over y, so
that we may forget it and write 7, = Tg + T;. 79 is the mass counterterm, whose

g
adjoint is defined by:

TE*[C(y, 2)C(x,u)] = C(x, 2)C(x,u) (11.3.44)
and Tgl is the wave function counterterm, whose adjoint is defined by:

O, )0 w) = 5 - 2y - 2) 5o

5 (x,2).C(x,u) (11.3.45)

These counterterms are pictured in Fig.I1.3.6. Again by parity, only the terms

with g = v survive after the internal integration over y — x (holding x fixed) is

performed. Finally we can remark that y —z and z—x are independent in (I1.3.45),

and we can use Euclidean invariance to replace each integral containing a particular

[(y — )2 520 (2, 2) by (1/4)]y — 2|2 528 (x, ). Writing A = 3 52— we
w

oxHoxh oxHoxt

can therefore rewrite (I1.3.45) as:
1
T;*[C(y, 2)C(z,u)] = §|y — 2|?AC(z, 2).C(x, u) (I1.3.46)

which is simpler and hopefully suggests more clearly that the wave function coun-
terterm really corresponds to the renormalization of a, the parameter in (I1.3.1)
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which corresponds in the action to [ 9,¢0"¢ hence, integrating by parts, to
— [ Ag.¢.

It is also useful to write the Taylor remainder formula:

(1—7)[C(z,u)C(y,2)] = O(a;,u)/0 d _Qt) %C(:ﬁ Ftly —x),2) (11.3.47)

As before, our rules on the choice of fixed vertices prevents any end of line

to bear the action of several (1 — 7,) operators. To the preceding argument for
biped free graphs, one has to add the observation that an external line of a biped
g € FUH{(F) cannot be the external line of other elements of F UHY,(F), except
maybe for quadrupeds h C g, and for these h our rule for choosing v.(h) ensures
that this external line common to g and h is hooked to v.(h), hence cannot bear
the action of the (1 — 7;) operator.

We can evaluate the net effect of operations (I1.3.43-47). In (I1.3.47) we earn
a factor at least M 3(F)=¢(Fl a0ain using representation (I1.1.3-4), and the
internal decay of a spanning tree of g with lines of indices greater or equal to
ig(F). Duplicating internal lines decay like in (II.1.22) again avoids using too
many times the same decay of the same line.

Similarly evaluating (I1.3.44) is neutral, and (IL.3.45-46) results in a loss of
at most M2 F)=% FI (Remember that g is in a safe forest if (IL.3.44-46) apply).

Let g be a biped of a safe forest F, and let us admit for a moment that
inside g/Ap(f) everything proceeds like in the preceding case. In the multiscale
representation, this means that after internal spatial integrations are performed

in g/Ar(f) and internal line indices are summed with respect to the internal scale

c
g9

(apart from an overall K™9) and renormalon factors which will be considered

later). The indices of the two external lines of g are eg(F) and j, with j > e (F)

by (I1.3.35). We want to compare the two lines C7 (y—z)C® F) (z, z) with insertion
of the biped counterterm for ¢g at x, to a single ordinary line Ce;(F)(y — 2) (see
Fig.11.3.7).

We have to add to the quadratically divergent factor M 255(F) the effect of
spatial integration over the position x of the ¢? reduction vertex corresponding
to g. This integration may be performed with the line of index 5 and brings a
factor M ~%. We combine this factor with the M2/ power counting factor of the
line of index j and sum over j > eg(F); this results in a factor M~=2¢5F) Using
the triangular inequality we can also reconstruct the regular spatial decay of scale

eg(F) between y and 2. Combining all these factors with formulae (II.3.44-46)

we reconstruct the ordinary estimate (IL1.6) for C® ) (y — 2), plus a total power

i¢(F) we obtain a quadratically divergent overall factor M 265 (F) since w(g)=-2

counting factor of M~2€sF)=%(F)l for the mass counterterm and of 1 for the
wave function counterterm. When we sum over ig(F), respecting the constraint
of safeness for g which is i (F) < eg(F), we get a constant in the first case and a
factor eg(F) in the second case (which may be bounded by imax (1))

The conclusion is that useless wave function counterterms (which correspond
to marginal operators) generate the same kind of renormalon effects as useless
coupling constant counterterms, and that useless mass counterterms do not. This
is consistent with the bound (II.2.18) and the general definition of f(G).

It remains to explain what we assumed, namely that inside each separate

9/Ar(9), g € FU{G} an analysis similar to the biped-free case takes place. The
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key point is to check that after spatial integration, vertical index space decay is
correctly generated. This means in particular that each connected component
lg9/Ar(g)]% with four or two external legs is properly renormalized, i.e. provides at
each scale a reward at least M ~! instead of costing respectively a constant or M?2.
Consider a proper closed subgraph h € Hf, (F) such that Bp(h) = g. The main
remark is that the less stringent definitions (11.3.34-35) now allow renormalization
of h on a wider range of indices than the minimal range in which h/Ag(h) appears
as a [g/Ar(g)]; component. Hence the bonuses M~! or M ~3 (respectively for h
quadruped or biped) occur on this wider range, and this results in renormalized
power counting not only for the corresponding proper closed graphs, but also
for one-particle reducible bipeds and quadrupeds and for 1PI open quadrupeds
when they occur as [g/Ar(g)]%’s. As expected, renormalization of proper closed
subgraphs takes care of all others divergences. We will check this fact on typical
examples.

Let us for simplicity forget about reduction by F, i.e. write simply g for
g/Ar(g) etc... We consider first the case of a one particle reducible divergent
subgraph h of g. There must exist a proper biped A’ C h as in Fig.I1.3.8, i.e. h’
is a proper component of h and there is a common border vertex for h and h';
otherwise h could not be divergent.

In this case consider the set I of indices ¢ for which A is a connected component
of g°'. We claim that if I is not empty, h' € H{,(F) and [ is a piece of the extra
range in which renormalization of h’ provides an M~ bonus. Indeed if i € I one
must have j; > ¢ > jo where j; and jo are the external indices of h' as shown
in Fig.IL.3.8. Therefore ef,(F) = jo. Since iy (F) > i (here we do mean iy (F)
as defined in (IL.3.4), not if,(F)), we have if,(F) > iy (F) > jo = e, (F), hence
h" € H,(F). The factors earned in the renormalization of &’ which cover the range
|72, min{jy, iy (F)}], in which obviously A’ itself is not a connected component of
g%, can then be safely attributed to the renormalization of h; they cover the desired
set I of indices.

Finally we examine the case of an open quadruped h, for which the renormal-
ization of its closure h* should save the day (see Fig.I1.3.5). Indeed by definition
(I1.3.34), if the set I of indices where h is a connected component of g is non
empty we can conclude that h* belongs to Hf,(F); and I is covered again by the
index range i¢.(F) > i > ij-(F) in which we get bonus factors M~ from the
renormalization of h*.

To complete the argument, let us check that there is no overlap, for a given
biped h, between the factors used in the different cases considered in Fig.I1.3.8
and II.3.5. Indeed the range i;, < i < if takes care of open quadrupeds inside h;
the range e; < i < i}, takes care of h itself, and the range e < i < min{is,ep}
takes care of one particle reducible graphs with h at one of their “ends”, and there
is no overlap between these three ranges.

As a last remark, consider that when G itself is a biped, the derivatives
corresponding to the (1 — 7¢) operator apply to a true external leg of G; in the
formula analogous to (I1.3.47) factors of degree 3 appear, which onez can bound
by |p|?. This explains the external momentum dependence of (I1.2.18) and the
definition of N in this case. This completes our sketch of the general proof of
Theorem I1.2.1, and we refer to [dCR1] [FMRS2] for a somewhat more formalized
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but less pedagogical proof.

As a technical remark, we note that the proof given above relies on the partic-
ular properties of ¢} amplitudes and is therefore in some respects less general and
systematic than the one of [FMRS2]. But in [FMRS2]| a more inductive approach
is used, in which a large number of Taylor operators may apply to the same line.
This makes the inductive bound to be proven more complicated, and also results
in a bound which is not uniform in n as far as the external momentum dependence
is concerned, which for applications may be considered a significant drawback.

Again a byproduct of the analysis is that Theorem I1.3.1 holds in the general
case as well: usefully renormalized amplitudes IG5, which are defined by the
same formula (II.3.33) than in the biped free case, but with D, replaced by the
generalized definition Dy, = HC(Q)) still do not develop any factorial and satisfy
the bound (I1.3.33). Hence it is a general phenomenon that “useless counterterms”
are solely responsible for renormalon effects.

In fact more precise statements can be derived from the analysis above. We
remarked that mass counterterms do not contribute to any factorial effect; so there
should be a way to write amplitudes with full mass renormalization and useful
coupling constant and wave function renormalization which does not display any
factorial behavior. It is easy to check (by trying some examples) that a proper
biped can never overlap with any proper closed divergent subgraph, and this was
proved rigorously in [dCR1]. In particular the set of all proper bipeds of G is itself

a closed forest called B(G), and the product [] (1 — ), factorizes in the R
bEB(G)
operator. We are interested in factorizing only the mass renormalizations, so we

write:

R= [] == [[C=="]]C-=) (I1.3.48)

bEB(G) F beF g€F

where the first product runs over all proper bipeds b of GG, the second over all
bipeds of F and the third over the quadrupeds of F, and Té)* and 7'bl* are defined
in (I1.3.44-46). We may now apply the classification of forests only to the sum over

forests in (I1.3.48) and obtain amplitudes Aé\;{ I in which the superscript M R means

that all the mass renormalizations are fully performed. The case Ag 6% = AMR UR

is what we are looking for, and we obtain:

Theorem 11.3.2

|AX Y Dy, o) | = |Z/Hdl’v (1—79%) H (1—7%) H (L=77)...

beB(Q) beDS q€D¢,

N
L @) [T e < (1 + sup [p; |V K™ (I1.3.49)
j=1 J

Theorems I1.3.1 and I1.3.2 are powerful motivations to find the expansions
corresponding to these usefully renormalized amplitudes which have the big ad-
vantage to be free of renormalon effects, hence to behave at large order like the
amplitudes of a superrenormalizable theory. The next section is devoted to this
problem.
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From now on we drop the superscript ¢ most of the time; in the biped free case
the definitions of the first part of this section are to be used, and in the general
case, the general definitions with superscript c.
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I1.4 The effective expansion

Tout ce qui est simple est inexact
mais tout ce qui est compliqué est inutilisable.
— P. Valéry.

Let us summarize the conclusions of the preceding section. The bare expan-
sion does not have a limit when the ultraviolet cutoff is removed. The renormalized
expansion has cured this defect, but the price to pay for that is definitely too heavy.
The “useless counterterms” make the study of renormalization quite painful (be-
cause one has to use forestry and to work always in reduced subgraphs g/Ar(g));
they also generate renormalon behavior which puts in danger the constructive pro-
gram. Intuitively a factor K™ in large order estimates may be compensated by
requiring the coupling constant to be very small, but this is not true for factorials
(renormalon effects).

So we search for an expansion “in between” the bare and the renormalized
expansion, as shown in Fig.I[.4.1, one which is just a reshuffling of both, but with
amplitudes which are the usefully renormalized ones. Hence it would have the
advantage of ultraviolet finiteness without the renormalon effects. The idea of
renormalization is that counterterms are hidden in the bare coupling constants;
so we should get rid of the useless counterterms in this way. But since the useless
counterterms depend on an index, or momentum scale, the corresponding coupling
constants must also depend on it. Therefore the corresponding expansion cannot
be a power series in a single bare or renormalized constant, but must be a series in a
whole sequence of index dependent constants called the effective constants. This is
particularly clear on equations (I1.4.1-2) below: the separation of counterterms into
useful and useless pieces being index dependent, there should be a compensating
index dependence in the effective constants in order for the left hand side of (11.4.1-
2) to be scale independent.

We pause briefly to remark that we have reached the typical renormalization
group concept of effective or running constants from the unusual point of view
of simply organizing counterterms so as to get the best large order bounds. The
historical and more traditional road to these concepts has been to write renor-
malization group equations which investigate the dependence of the theory upon
the subtraction scale, or the somewhat equivalent problem of finite changes of the
counterterms [SP][GL]. This standard road paved the way for an enormous amount
of work, from the discovery of the particularly interesting Callan-Symanzik equa-
tion [Cal][Sy1], to Wilson’s generalization of the renormalization group program
[Wil][KW], the investigation of renormalization group fixed points and their sta-
bility for various models, and led even by a back-reaction to new proofs of renor-
malizability [Ca2]. We do not try any review of this vast subject. In particular
we do not enter into the definition of normal ordered products, the Zimmermann
identities, the renormalization group equations which investigate how the theory
changes with a change of cutoff or a change of the subtraction scale. This is be-
cause these topics and the Callan-Symanzik equation are explained in great detail
in most books devoted to quantum field theory or renormalization theory: a ded-
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icated reference is [Co]. For a rather complete overview of the renormalization
group and its application to critical phenomena, we refer to [Am]. The reader
may be disappointed not to find this standard material here; but the traditional
presentation involves defining the corresponding concepts and equations as bare or
renormalized power series, and we are about to argue that the proper framework
is neither the bare nor the renormalized expansions but an effective expansion
in between. We are also going to define the discrete version of these equations
which is naturally adapted to the multiscale representation. In particular we will
find natural discrete analogue of the famous renormalization group functions such
as the ( function, and we prefer to proceed directly toward this goal. Discrete
equations are less elegant than differential equations, but again they seem to be
required by the constructive point of view to be developped in part III.

However let us warn the reader that the effective expansion derived below is
more limited in scope than the general philosophy of the renormalization group,
and also stress again that the multiscale slicing of the propagator is a somewhat
simpler but less general method than Kadanoff’s and Wilson’s block-spin methods;
as remaked already, it requires indeed a gaussian measure in the problem. We
hope however that the presentation below may have an advantage over the more
standard one, at least for the beginner: it applies to the internal lines “inside”
the Feynman amplitudes rather than to the external legs. Hence it develops the
correct intuition that renormalization group behavior is an essential piece for the
construction of the theory, not just a device to analyze its behavior in various
regimes.

Let us make precise the paths by which the three expansions of Fig.I1.4.1
communicate. The bare expansion leads to the effective one by developing selec-
tively some of the bare constants into effective constants plus the useful piece of
the counterterms. This is the path used in chapter III, where the bare theory
is always the constructive starting point. Conversely the renormalized expansion
leads to the effective one by resumming the useless counterterms, or equivalently
by absorbing them into effective constants. Hence in a schematic way:

bare constant = effective constants + useful counterterms (I1.4.1)

renormalized constant = effective constants — useless counterterms  (I1.4.2)

these equations being consistent with the standard rule:
bare constant = renormalized constant + full counterterms (IL.4.3)

The two paths are not exactly symmetrical, however, and one can consistently
argue that the first one is shorter and simpler than the second one. This is because
(forgetting for the moment the subtleties due to bipeds) the definitions (II.1.10-
11)-(I1.3.4-5) of indices i, and e, make the condition of almost locality i, > eq4
rather stringent: every internal line of g has to have higher index than every
external line of g. In other words there is not much renormalization performed in
the usefully renormalized expansion and in this way it is closer to the bare one
than to the renormalized one. Perhaps this argument may not seem serious at
first sight. Nevertheless it is also the reason for which the first path is simpler; we
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do not expect any sum over forests to appear along it, since these sums neither
appear in the formulas for the starting point (the bare amplitudes) nor for the
end point (the usefully renormalized amplitudes, see (I1.3.33), and also (IL.3.49)).
Sums over various forests in fact only arise when counterterms are developped for
intermediate situations in which internal and external indices are quite mixed.

It is therefore natural to start with a theorem relating the bare and effective
expansion. As in the preceding section and for the same reasons we state it first for
the biped-free piece of the perturbative expansion, then extend it to the general
case.

We fix a cutoff index p and the bare coupling g,. For each vertex v of a graph
G it is useful to define;

ey (1) = max{i;(u)|l hooked to v} (I1.4.4)

Recall that by convention the index of external lines is —1, so e,(u) = —1 is
possible but only for the unique vertex of the trivial graph with a single vertex,
N =4, and no internal lines.

The bare expansion for a connected Schwinger function with cutoff p is written
in analogy with (I.4.15) as:

cP = E MA (IL.4.5)
N,bf — G - E
S(G)
G pulp<lp

where the sum is over assignments € [0, p]“) (in short < p) and over connected
biped free graphs with N(G) = N, as indicated by the index bf (biped-free).
(I1.4.5) defines C]‘:,’bf as a formal power series in g,,.

Theorem 11.4.1: Existence of the effective expansion

There exist p + 1 formal power series in g, = g5, called g)_,, g5 _,, ..., g§ and
g”, (the upper index is to remind the reader that the entire theory has ultraviolet
cutoff p) such that the formal power series (I1.4.5) is the same as:

L ur
C]p\f,bf = Z [H(_gsv(u))]mAG,u (I1.4.6)
G,u<lp veG
where we recall (see (11.3.33)):
agt = [Taw, I 0 =720, 14.)
v heD,,

Za,, is the integrand for graph G and assignment p; for instance if we take the
external arguments to be fixed momenta we have:

N

Zau =[]0 (@i m) [T e (IL.4.8)
l j=1

and the effective constants g? obey the following inductive definition:

1
d=dln- Y @H<—g;(m>/nd%

H quadruped,u<p veH veH
TH (@):’L+1
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I a=-m)lmZu (I1.4.9)
heD,, (H),h£H

where 75 75 v = Zi ulp=0 = [L1en Cu(#) (x;,3,) is the integrand for H taken at 0
external momenta, and D, (H) is simply the forest D,, = H,,(0) of the preceding
section, but for the graph H. In (I1.4.9), the summation over quadrupeds does not
include the trivial case of the graph reduced to a single vertex, which corresponds
in fact to the first factor g/, ; in the right hand side of (I1.4.9).

The minus sign in (I1.4.9) is consistent with the minus sign in (I1.4.2), because

the counterterm is [] IT (1 — 7)](—=7r ) Z, but the vertex has really a
heD,, (H),h#H

value —g, so the reader should think of (I1.4.9) as a more convenient form of the

equation —g; = —g;+1 — )y counterterm(H ).

(I1.4.9) defines each g? (by inductive substitution) as a formal power series in
g, of the form g,+ > <, 7 (g,)". The induction stops at g”; which is the last one
for which the sum in (I1.4.9) is not empty. Let us apply the result (I1.4.6) to N = 4
and put to 0 the four external momenta. When G is a non trivial quadruped, G
itself always belongs to D, (G), and the (1 — 7¢) operator makes Agi vanish at
0 external momenta. For the trivial graph with a single vertex v we remarked
that e,(p) = —1. Hence the formal power series in g, (IL.4.6) for C%(0,0,0,0)
reduces exactly to —¢g_;. This means that in the sense of formal power series in
g, we must identify ¢”, with the renormalized coupling g,, which by definition of
our subtraction scheme is precisely minus the connected four point function at 0
external momenta C%(0,0,0,0).*

The proof of Theorem I1.4.1 is a simple combinatoric exercise; no analysis
is involved, since all integrals involved have cutoffs and are therefore obviously
absolutely convergent. Again the combinatoric has to be checked at the level of
contraction schemes. We go from (I1.4.5) to (I1.4.6) by pulling out inductively
the useful counterterms hidden in g,, one slice after the other. At slice ¢ an
intermediate version of Theorem I1.4.1 is obtained:

1 .
P _ P UR,i
Oy = Z [H(—gsup(@ev(u))]mz‘lgﬂ (IL.4.10)
G,u<p velG

where:

Agy' = /Hdﬁ% 1 a-7)za,. (IL.4.11)
v heD;,
and:

D! = {h € Dl > i} (I1.4.12)

(I1.4.10) is obviously nothing but (I1.4.5) if i = p. Assuming it at scale i + 1,
we prove it at scale ¢ by simply adding and subtracting the counterterms which

change Ag]z”“ into Ag]z’l. These are the counterterms corresponding to the

* The renormalization condition of BPHZ define in fact g, as the 0 momentum
value of —[%FQ(O)]_2F4(O), hence include a field strength renormalization factor
which disappears only if the renormalized parameter a, is 1. However we do not
need to discuss this sublety for the moment, since in the biped-free theory there
is obviously no wave function renormalization.
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quadrupeds {H, ..., Hy} = {H € D,Jig = i+ 1}. Hence we add and subtract to

each Aglzi“ the quantity:

Z H (=7m;) H (1—=7)2Za,, (I1.4.13)

Sg{Hl,,Hk} HJES heDL+1
S#0
The piece added changes [[,cpi+1(1 — 77;) into [],cp: (1 — 777) in each am-
I3 3

Agi’iH AURl The piece “subtracted” should be
developped as a sum over S, so as to get:

plitude, hence it changes into

I URs
ClpV,bf - Z [H (_gspup(i—i-l,ev(u))]mAG,u,S (IL.4.14)
(G,1,8),u<p vEG

i itl
SCD}, -D;

with

At = AGMT i S =0 (I1.4.15)

and

A(U;IZZS = /dev (—7H;) H (1—14)Za,, otherwise. (I1.4.16)
H;€S heDit

Remark that this induction is really nothing but the Bogoliubov induction,
but with the additional element that the multiscale decomposition provides at
each scale a well defined natural family Hy, ..., Hy of disjoint subgraphs, which are
the ones to which the Bogoliubov induction should be applied, instead of being
performed blindly with respect to scales.

We can now define, since the elements of S are disjoint, the collapse ¢; as an
operation which is defined on triplets (G, i, S), S C DZ — ijl, and which sends
(G, S) to (G', 1/, D), G' being obtained from G by reducing each H; € S to a
single vertex, and p’ being the assignment derived from g by simple restriction to
the lines of G’. Remark that every vertex of G’ corresponding to such a reduction
must have e, (u) = e,(p') < i. We reorder now (11.4.14) as

CRop= 21 > [H(—gﬁup(m?ev(#))]ﬁ eIy (I14.17)

(G",p") (G, S),u<p veG
¢i(G7/1'75):(G’7N’,7$)

For each (G’,p') the corresponding sum in (I1.4.17) is an infinite power series
which in fact replaces exactly, at each vertex v of G’ satisfying e,(u') < i, the
coupling g/, by the right hand side of (IL.4.9), hence by ¢/; the sum over H in
(IL.4.9) indeed corresponds exactly to the sum over all possible insertions of an
H; which is collapsed by the ¢; operation to the vertex v, in the above notation.
To check that combinatoric factors agree, one has again to perform this analysis
at the level of contraction schemes, in which case it becomes the same problem as
for the Bogoliubov induction considered above.

This achieves the proof of (I1.4.10) at scale 4, hence by induction, the proof
of Theorem I1.4.1.
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It remains to show that the effective expansion has the advantages but not
the drawbacks of the renormalized expansion, and so we should derive a version in
which the ultraviolet limit has been taken. This is not straightforward, since we
can no longer use the bare constant. But since g, = ¢”, is a formal power series
in g, starting with g,, it is possible to invert it at the level of formal power series.
This is also true for each effective constant g? which by substitution becomes a
formal power series in g, starting with g,.. (Remark that the power series g
obtained in this way still depend on p, the global cutoff).

Now the series (I1.4.6) when considered as formal power series in g, through
such substitutions is nothing but exactly the ordinary (biped-free) fully renormal-
ized power series in g, with cutoff p (i.e. with full renormalization operator R,
but propagators C” instead of C).

An ultraviolet limit of the effective expansion may then be obtained in the
following sense:

Theorem 11.4.2 Ultraviolet limit of the effective expansion

The effective constants g have a limit as p — oo order by order as formal series
in g,. This limit is called ¢{°, or simply g;. Furthermore, in the sense of formal
power series in g,, the biped free part of the BPHZ renormalized expansion for
Cn satisfies:

1
Cnor =Y ] (—gev(u))]mz‘lgﬁ (I1.4.18)
G,n vEG

The subtle point is to show the convergence (order by order in g,) of g to g;.
This may be done by rewriting ¢”*' — ¢ as a sum over renormalized graphs which
have at least one line at scale p, and then use the vertical exponential decay of such
graphs in p — i. Formula (II.4.18) then follows from the similar statement for the
theory with cutoff and the absolute convergence of the renormalized amplitudes
with cutoff to the ones without cutoff.

Theorem I1.4.2 achieves our goal of an effective expansion which is ultraviolet
finite, like the renormalized one, but free of renormalons and of sums over forests.

When bipeds are added, we may choose between several generalizations of
Theorems I1.4.1-11.4.2. The most natural generalization is to derive an effective
expansion with three types of effective parameters, the effective coupling constant,
the effective mass and the effective wave function constant. This requires to re-
express that theory as a sum over generalized ¢* graphs with two point mass
and wave function insertions, as in Fig.I.4.2 (recall that the initial mass and wave
function parameters are not expressed as coupling constants, but used to build the
propagator of the theory).

To implement this idea it is convenient to use the general definitions of
Sect.I.3B for internal and external indices. We have now generalized graphs
G with regular vertices v € V(G) with 4 legs, for which definition (IL.4.4) is ade-
quate, and two other sets of vertices WO(G) and W(G) with 2 legs, corresponding
respectively to mass and wave function insertions. For w € W2 U W, in view of
(I1.3.35) one should define

ew (1) = min{i;(p)|l hooked to w} (I1.4.19)

Then we have the generalization of Theorem 11.4.1:
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Theorem 11.4.3

There exist 3(p + 1) formal power series in g,, called g;, 6m? and éa;, i = p —
1,...,0,—1 (they depend on p, like those of Theorem II.4.1, but we drop this
dependence to avoid too heavy notations), such that the formal power series in g,
for C; can be rewritten as:

Ch=> 111 Coeell TI (=6m2 ()

G,u veV(Q) weEWO(G)
1 UR
| A (—5aew(u))]mA@,u (11.4.20)
weW (&)
where the formula for Aglz is:
Ac, _/ IT e [TO-m) I =227, (I1.4.21)
veVUWOoUW! heD, weW(G)

ch*,u is the integrand for G, and i, namely at fixed external momenta:

Ze = ] (@i Hewa% (I1.4.22)
l 1=1

and the operator A = 0,0, acts, for each w € Wl(é), on one of the two prop-
agators hooked to w, in agreement with formula (I1.3.46) for the action of the
operator 7%,

Furthermore the effective constants g;, dm?, da; obey inductive relations gen-
eralizing (I1.4.9). One starts with g, being the bare coupling, 5mp =0and da, =0

and define by recursion:

9i = Gi+1 — Z S(lﬁ) H (_gev(u))[ H (—6m§w(u))]

H quadruped ,u<p veV (H) weWO(H)
i (0)=i+1
N | G A | (R | (e
weW(H) veEVUWOUW(H) heD(H), ,h#H
(11.4.23)
where 74 Zp = Zpg lp=0 = [] Cu() (g, 1) is the integrand for H taken at 0
IeH

external momenta;

mt =it S i T ol TT om2 )

B biped ,u<p veV(B) weWo(B)

BRI / [ anl [ (-m)zy, (rizy

weW(B) veEVUWOUW 1 (B) heD(B), ,h#B
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ba; = 6a¢+1 + Z g 1B) H (_gev(u))[ H (_6mgw (u))]

B biped ,u<p veV(B) weW?(B)
ig(0)=i+1
BRI / M dnd [ (-mizy, (La25)
weW1(B) VEVUWOUWL(B) heD(B),,h#B
where Z2 = T] O (x;,y) and ZE# = glv =y Tliep €% (21, 1), @ and y

being the border vertices of B. These last definitions are again consistent with the
action of the Taylor operator for a biped as shown in (I11.3.44-46).

This theorem is checked by induction exactly as the previous one. A similar
theorem for the 1PI or vertex functions I'y is left to the reader to formulate, the
sums being of course restricted everywhere in this case to one particle irreducible
graphs.

Inverting the series g; we can reexpress them as series (still depending on p)
in g_1 = g, and substituting them everywhere we obtain the BPHZ renormalized
expansion for C%;. In particular we can obtain renormalized masses and wave
function constants m2 = m? 4+ ém? | and a, = 1+ da_1, if m? and 1 were the bare
values used to build the propagator. These renormalized parameters coincide with
the ones of the BPHZ presription at 0 external momenta, so that m2 = —I'5(0)
and a, = —%QFQ(O).

For these series we can pass to the ultraviolet limit p — oo and the general-
ization of Theorem I1.4.2 also holds:

Theorem 11.4.4
The effective expansion reexpressed in terms of g,., m, and a, in the limit p — oo
is the same order by order in g, as the usual BPHZ renormalized series.

It is in principle possible to work out a direct proof of Theorem II.4.2 and
I1.4.4, i.e. to reshuffle directly the renormalized series into effective ones without
ever using an ultraviolet cutoff and the bare expansion. The effective constants
come from the resummation of the useless pieces of the counterterms of the renor-
malized expansion. This approach has been partly implemented in [Ril] (see also
[DFR]), in which such explicit resummations have been introduced for all coun-
terterms of the bubble type (the so called parquet forests). A general resummation
rule in the sense of formal power series obviously exists by Theorem I1.4.4, but to
write it in the form of a simple set of explicit resummation rules seems difficult
since forests are now an essential ingredient. This illustrates the fact that path 2
in Fig.I.4.1 is less straightforward than path 1.

Expansion (I.4.20) is not as canonical as (I1.4.6). In particular it is rather
natural to work out similar versions in which chains of two point insertions in
the generalized graphs of (I1.4.20) have been resummed. This is possible essen-
tially because two point insertions lead to geometric, explicitly summable series.
This leads to an effective expansion with effective coupling constants and effective
propagators; the advantage is that only ordinary graphs are required, the draw-
back is that the formula for the effective propagators is somewhat complicated.
We refer to [FMRS4] for an example of such a construction.

Finally one may take advantage of the fact that mass renormalization does
neither create forest nor renormalons problems, as was shown in Theorem 11.3.2;
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hence one may derive a perturbative expansion which has full mass renormaliza-
tion and effective coupling and wave function constants; the amplitudes for this
expansion are the Aé/[R’UR of (I1.3.49).

Furthermore in asymptotically free theories which will be discussed soon, it
is even useful to consider an expansion with effective coupling constants, bare
wave function constant and renormalized mass, since we will see that asymptotic
freedom makes in fact the wave function renormalization finite. The correspond-
ing amplitudes are noted AgR’CCUR for “mass renormalized, coupling constant
usefully renormalized” (and wave function not renormalized...). Such expansions,
although of mixed character, are optimal for instance for the construction of the
planar —g¢} theory which is the goal of the next chapter. They can also be used
in the constructive context [FMRS4][FMRS5].

To summarize this section, the multiscale decomposition provides a simple,
well defined prescription for writing down discrete flows for the relevant and
marginal couplings of a renormalizable theory like ¢%; the bare or renormalized
parameters simply provide particular boundary conditions for these flows. This
formalism is completely rigorous at the level of formal power series, and it leads to
effective expansions which are formally equivalent to the bare or renormalized ones
but are both ultraviolet finite and free of forest complications and of renormalon
effects.
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I1.5 Construction of “wrong sign” planar ¢.

In this section we show how to apply the formalism of the effective expansion
beyond the sterile level of formal power series, on a simple model which is not a
full-fledged field theory but has nevertheless some physical interest.

Even in the effective version without renormalon effects, it is not easy to sum
up perturbation theory because of the large number of graphs involved at large
order. This divergence of perturbation theory occurs even in 0 dimension, for a
single integral [ e~ =97" 4z Tn the next section we will analyze it in some detail
and conclude that we must trade absolute summation for Borel summation at best.
However there is a second problem. It is usual in the construction of a theory in
the weak coupling regime to take care of combinatoric factors like the constants
in the uniform theorems of Sect.Il.1-2-3 by requiring the coupling constant to be
small enough. But in the effective expansion of Sect.Il.4 there is an infinite set
of such coupling constants, and we need therefore them to be all simultaneously
small enough. If perturbation theory is asymptotic, the sign of the first term in
the recursion relation (I1.4.9) or (11.4.23) for g; — g;4+1 becomes very important. If
this sign is negative, g;11 will be larger than g; (for small enough g;) and holding
the renormalized constant g, = g_1 fixed to a small value it is very doubtful that
all other effective constants g; can be made simultaneously small. On the other
hand if it is positive, g;11 is smaller than g; and the goal seems attainable. In this
second case the theory is called asymptotically free (or more precisely ultraviolet
asymptotically free); indeed in the cases where we can in fact make sense out of
the recursion relation (I1.4.9) beyond formal power series, g; tends to 0 as i — oo,
with g, kept fixed and small.

The first term in (IL.4.9) or (I1.4.23) corresponds to H (or H) being the bub-

ble graph. In the e™? /e theory with the ordinary sign of the coupling constant
(9 > 0), Ty Zp is positive; because of the minus sign in the exponential there is
however a minus sign in (I11.4.9)-(11.4.23) and the theory is not ultraviolet asymp-
totically free. This fact of life is mathematically (and perhaps even physically)
frustrating because it deprives us of the simplest and most natural model to con-
struct. However by reversing the direction in the index space, a theory has to
be either asymptotically free in the ultraviolet or in the infrared direction; the
ordinary ¢* theory is therefore asymptotically free in the infrared regime, which
opens up the possibility, exploited in part III, to construct the critical or massless
limit of the model with fixed ultraviolet cutoff. An other idea is to change the sign

of the coupling constant: we call the corresponding theory, with action ™ /e
and g < 0 the “wrong sign” ¢ (or the “negative coupling” ¢* theory, but this
may lead to some confusion, because —g is positive for g < 0...). This model is
ultraviolet asymptotically free, but a negative ¢* potential means that ¢ = 0 is an
unstable minimum, and in spite of many efforts there is therefore no construction
of the model (apart from analytic continuations which are expected not to meet
the axiomatic requirements [GK5]).

But there is a restricted version of the wrong sign ¢, the planar wrong sign ¢*,
which offers a nice benchmark to study asymptotic freedom and make sense of the
flows and recursion relations of the previous section beyond formal power series.
The planar theory was proposed initially by 't Hooft ['tH2] as an approximation for
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the study of SU(N) gauge theories at large N; it has also been studied in connection
with random surface models or string theory. The name planar comes from the
fact that the perturbation theory of these models is roughly speaking restricted to
graphs which can be drawn on a plane without self-intersections. Constructions of
the wrong sign planar ¢* were performed in ["tH5-6-7], [Ril], [GaNi]; here we try a
compromise retaining some of the best aspects of the initial constructions. Because
it is not adapted to the constructive versions of part III we do not however retain
the nice continuous slicing provided by « parameters and used in [Ril][Hu]; we
invite the reader in search of a “truly optimal” version to write down the necessary
modifications as an exercise.

The ¢* planar model which we consider is the N — oo limit of an N by N
matrix valued ¢* model. Hence the field ¢ is a bosonic field with components Op.qs
1 < p,q < N. The formal functional measure for this model is similar to (I.3.1)
(for a real valued ¢):

dy — %e+(g/4!N) ety =(m*/2) [ Trto—(a/2) [ Tro.0'0 6 1y (IL5.1)

where D¢ is a product of independent formal Lebesgue measures for each compo-
nent of ¢. This model has global O(N) invariance (there is a complex version with
global U(N) invariance). The “wrong sign” case in (II.5.1) corresponds to g > 0,
which avoids minus signs in many of the formulas below.

The Feynman rules of this model are discussed for instance in [GrK]. Propa-
gators carrry a matrix index, hence it is convenient to represent them as double
lines, one for each matrix index. They are shown together with vertices and some
graphs in Fig.IL.5.1. Remark the cyclic symmetry of the vertex. To each closed
loop there corresponds a sum over possible values of the index flowing through
this loop, which gives a corresponding factor N. There is a factor N~! per vertex,
hence the overall factor for a graph with k£ external lines is

NZ-k=2h (I1.5.2)

where h is the number of handles of the surface on which the graph is a triangula-
tion. This number may be visualized by considering each propagator (double line)
as a thin ribbon. All the ribbons of the external legs are tied to a single point
at infinity (without tangling them). Then each closed index loop is filled with a
flat piece of surface matching with each ribbon on its boundary. In this way a
compact surface is generated, and h is simply its genus (its number of holes or of
“handles”). The formula (II.5.2) is then a standard homological formula, which
can be checked on the examples of Fig.I1.5.1.

At fixed k in the limit N — oo the leading term surviving in (I1.5.2) corre-
sponds to the sum of all graphs with no handles (h = 0), and is called the planar
theory. Apart from the constant overall factor N27* in front, the amplitudes are
then exactly similar to the ones of the ordinary ¢* theory, the only difference lying
in the planar restriction. Remark that it might be misleading to simply state that
the planar theory is the ordinary ¢* theory reduced to “the graphs that can be
drawn on a plane without self intersection”, because in the prescription for com-
puting the value of h above we cannot avoid to consider the double lines. It is true
that for any planar graph the collapse of the double propagators to single lines
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gives an ordinary ¢* graph that can be drawn on a plane without self crossings.
But the combinatoric factors associated to such a graph are usually different in
the planar and the ordinary theory; this is already true for the “bubble graph”
(and leads for instance to different values of the first term in the 8 function for
the ordinary and the planar theory).

From (I1.5.2) only the two point function (k = 2) has a non zero limit, so
that the planar theory strictly speaking is a free field theory with a complicated
propagator. In fact we will give a non trivial meaning to the sum over planar
graphs for any Schwinger function Sy, discarding the constant overall factor N2=*
in front. This point of view allows to introduce the renormalized coupling constant
as ususally as the value of the connected four point function at 0 external momenta,
etc... Nevertheless one should keep in mind that these planar series without the
overall factor N2=% are no longer exactly the N — oo limit of (IL.5.1), and in
particular one should not believe that they correspond to a full fledged interacting
field theory satisfying the Osterwalder-Schrader axioms.

There is an even simpler model with similar features: it is the N — oo limit of
the N-vector ¢* theory, which we pause to discuss briefly. In this model the action
is similar to (IT.5.1) but ¢ is an N component vector, so that ¢'¢ is a scalar product,
and there is no need for traces in (I.5.1). The Feynman rules and typical graphs
for this model are shown in Fig.I1.5.2. The leading terms as N — oo for vacuum
graphs, two, and four point functions behave as N, 1, and N1, respectively (some
of them are pictured in Fig. I1.5.2). Again this limit should be considered a free
field. By Wick ordering one may eliminate the tadpoles (lines with both ends at
the same vertex). Then the leading graphs for instance for the four point function
are simply the bubble chains of Fig.I1.5.3. They form a geometric series which can
be summed explicitly and replaced by a wavy line. This point of view allows to

“wrong sign”

reorganize the graphs of the expansion as in Fig.I1.5.4. Again for
g the model is asymptotically free. Nevertheless the “bubble chain” model is too
simple to keep some interesting features of asymptotic freedom like the loglog
behavior analyzed below (unless next to leading order in N=! is included). This
is why in this section we choosed to analyze the less trivial planar series.*
Although not explicitly soluble like the “bubble chain” model, the planar
model remains entirely tractable with perturbative methods because of the follow-

ing main simplification:

Theorem I11.5.1

There exists some constant K such that the number of planar Feynman graphs
for the ¢* theory, counted with their proper multiplicity, is bounded at order n by
K™ (times a function of the number of their external legs).

The proof of this statement is in [KNN]. An other proof together with an
asymptotic analysis of the number of planar diagrams at large order is in [BIPZ].
Here we do not need the precise value of K.

* As an interesting problem, which is open to the author’s knowledge, we suggest
to work out these models and their N — oo limit for tensor fields ¢ with more
than 1 or 2 indices (there may be no canonical choice for the vertex), and to search
for an analogue of Theorem II.5.1.
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Theorem I1.5.1 means that the planar restriction trims most of the graphs of
ordinary ¢* theory and that for instance the bare series with a fixed ultraviolet
cutoff has a finite radius of convergence.

Following the remarks at the end of last section, we use as a starting point
the perturbation theory with mass renormalization fully performed and with bare
coupling constant g, and bare wave function constant a,. The Schwinger function
CP

N planar dT€ therefore expressed as:

MR
7planm‘_ Z Slanar(G) GW« (1153)

the sum being performed over planar graphs G, and Spianar (G) being their combi-

natoric weight in the planar theory. From now on we forget the subscript planar
in the rest of this section. The mass-renormalized amplitudes AM#

by:
Ag{ﬁz/ndaxv T a-%"2a, (I1.5.4)

are defined

We pass to an effective expansion only for the coupling constant. Hence we
derive an analogue of Theorem I1.4.1, rather than of the more complicated Theo-
rem I1.4.3. (This will be justified only a posteriori when asymptotic freedom will
make finite the apparent divergences due to the lack of wave function renormal-
ization). Therefore we really do not need all the apparatus of sect. I1.3B to treat
bipeds. We can stick to the simpler definitions (I1.3.4-5) of external and internal
indices. We also do not need the lemmas I1.3.1 and I1.3.2 for the classification of
forests. We simply define D, as the forest of all quadrupeds ¢ C G which satisty
the almost locality condition i,(p) > €,(x). Then we derive the following analogue
of Theorem I1.4.1:

Theorem I1.5.2
There exist p+ 1 formal power series gf, i = p—1,...,—1 in g,, such that (IL.5.3)
is the same power series in g, as

Z H g (“) MR CCUR (I1.5.5)

G,u<p ved

where

AMBCCUR /Hd% [T == I 1 =7)Za (IL.5.6)

bEB(G) q€D,,

and

TRV SR | PN

H quadruped, u<p vEH
g (0)=i+1
/Hd% T a-=9 [ (-)raZm, (IL5.7)
beB(H) q€Dy(H),q#H

To establish this formula one follows the same path as for Theorem I1.4.1,
except that the combinatoric of planar Wick contractions is different from the
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ordinary one, so that the combinatoric aspect of the Bogoliubov induction must
be checked again. The key point to notice is that inserting a 4 point subgraph at
a particular vertex, one must now preserve the cyclic ordering in the plane of the
4 double lines or “ribbons” of the planar vertex [Ril]. Apart from that, the proof
is just as before.

To go beyond formal power series, we want to choose first g, so that the
power series gf and (IL.5.5) are convergent. They will then define the theory.
Using Theorem I1.5.1 and the bounds of Sect.I1.3, this is relatively easy, provided
g, is very small as p — oo. But if g, is too small as p — oo we end up on an
uninteresting theory with g, = 0. Hence the real challenge is to find a clever p
dependent ansatz for g, so that as p — oo, the renormalized coupling g”, = g#
tends to some given small fixed g,; then the limit constructed in this way is not
trivial, but corresponds to this prescribed renormalized coupling.

We start with a heuristic search for the right ansatz, and then prove that it
actually works.

The smallest possible graph in the recursion relation (IL.5.7) is our friend
the bubble; the only other connected four point graph with two vertices is @2 in
Fig.I1.5.1, which is 0 after mass renormalization is performed. To second order
(IL.5.7) reduces therefore to:

g9f =gl +0 >, [g]"lz]Q/d“yC“ (z,)C" (x,y) (IL.5.8)
7:171'2:Z'+1,...,p
ilgEinf{i17ig}:i+1

By translation invariance the right hand side is independent of x; b is by definition
the planar combinatoric coefiicient of the bubble, and we define jjo = sup{iy,is}.
For fixed 715 after integration over y the sum over jio > 419 is exponentially
decreasing as shown in Sect.I1.2; furthermore the mass term in the propagators is
also small if 2 >> 1. More precisely it is a simple exercise to check:

Lemma II.5.1 There exists a numerical constant 5 such that:

Balog M = b lim pli)rgo > / d*yC™ (x,y)C* (x,y) (11.5.9)
t12=1+1
J125p

Furthermore both limits are “exponential”, in the sense that for some small
enough o:

|B2 log M — b Z /d‘ly(]i1 (z,)C%(z,y)| < e 0P~ 4 =0 (I1.5.10)
i1o=it+1
J12<p
(B2 may be identified with the second order coefficient of the Callan-Symanzik (3
function [Cal][Syl]; in the planar theory it has the particular value 15o3; this
value, smaller than the standard value % of 35 for one component ¢} reflects
the fact that there are few contraction schemes which respect planarity and cyclic

ordering of the planar vertices.
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The sum over j15 being exponentially decreasing it should also be no problem
to replace (at least in the second order approximation we are using) g7, by g7\,
or even g¢;g;+1. With all these changes the recursion relation (I1.5.8) takes the
simpler form (we forget superscripts p since p — oo has been taken in (I1.5.9)):

1 1
— — =~ Gylog M (I1.5.11)
gi+1  Gi

an equation whose exact solution is, in terms of g, = g_1:

Jr
1+ (i+ 1)g,02log M

gi = (11.5.12)

Let us assume that the approximate “asymptotically free” behavior g; ~ %
deduced from (I1.5.12) is correct; it has important consequences.

The first consequence is that only third order terms in the recursion (I1.5.7)
should be relevant in determining the exact form of the ansatz for g,. This is

because relation (II.5.11) when generalized to higher orders becomes:

1 1
-~ _ g_ = (2 log M + const.g;+1 + 0(91'2+1)
t. logi
~ By log M+ 22 4 0(22 (T1.5.13)
) 7

Since % is still a divergent series but 1‘;§i is not, the correct asymptotic behavior of

g; !, starting from a fixed value of g_; = g,. should be (32 log M )i + const. logi +
const.. We call % the constant in front of logi (indeed (5 turns out to be the
third coefficient in the Callan-Symanzik beta function).

The second consequence is that if we perfom the effective analysis for the
wave function constant, we should derive a recursion relation of type (I1.4.25).
The leading term would correspond to the second order biped By in Fig.Il.5.1
(since mass renormalization kills the first order tadpole), hence to a contribution
in g2, ;. Therefore we can expect:

t. log
Baiy —ba; ~ o+ O(—2t) (IL5.14)
1 1

and Y ;" da; should be finite (and even small for small g,). This means that a
bare ansatz in which a, is constant in p (e.g. close to 1) is acceptable since it
leads to a finite renormalized wave function constant, also close to 1 for small g,..
We summarize this phenomenon by saying that in an asymptotically free theory
of this kind the flow of the wave function constant is bounded (and small for small
coupling). This is neither true for the flow of the mass nor for the flow of the
coupling constant. An other important aspect of this phenomenon is that the ap-
parent logarithmic divergences associated to dangerous bipeds in D,, are spurious.
Although the second Taylor subtraction corresponding to wave function renormal-
ization has not been performed for these bipeds, their contribution is nevertheless
finite since there are at least two vertices for each them, and ) " i™? converges.
But one should be aware that there is some price to pay for that: the index space
convergence of the amplitudes in the effective expansion (I1.5.5) now requires to
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use the decay of the vertex factors ], ge,(u), and is no longer exponential in in-
dex space, but only power-like when bipeds are present. This requires sometimes
additional care, as will happen in the computation of the coefficient (33 below.
The conclusion of this heuristic analysis of asymptotic freedom is to justify,
as announced, our use of a formula with no wave function renormalization, and to
tell us that in order to land onto a small finite renormalized coupling constant, we
should try as an ansatz for a, a constant a close to 1 and for g, the formula:

9, =1(p,C)"Y  [(p,C) = (Bzlog M)p + %logp +C (T1.5.15)

where 5 is defined by (I1.5.9), 35 is an other computable constant (defined by
(I1.5.21-22-24) below) which results from the careful study of the subleading terms
in the recursion relation (IL.5.7), and C'is a (large) constant, whose value is related
to the exact value of g, that one wants to obtain. Hence the constants a and C' play
the role of two bare parameters which parametrize the two parameter family of
theories one is looking for (remember that from the beginning the third parameter,
the mass, is the renormalized one).

To formulate as a precise theorem the construction of the planar theory it
is convenient to use complex values of @ and of C' in (II.5.15) and to introduce
the half-plane Hg = {C|ReC > K} and the disks Dy = {g[Re; > 2} and
D} ={a;|a—1| < 6} of radius é and centers respectively at § and 1 (see Fig.IL.5.5).
(Of course D¢ = Cg/7 in the notations of section I.5).

The main result is then summarized by:

Theorem 11.5.3

Let g, be given by (IL.5.15), with C' € Hg and K large enough, and a, = a,
a € Dj, with ¢ small enough. Then the recursive relation (II.5.7) and the effective
expansion (IL.5.5) are absolutely convergent, uniformly in Hx x D}. The corre-
sponding sums ¢g? and C%, are analytic in Hgx x D; and converge uniformly as
p — 00 to functions g; and Cly, therefore also analytic in Hx x D}, which define
the theory with no cutoff.

In particular there is a doubly analytic map from (C,a) to the renormalized
coupling and the renormalized wave function constant (g,,a,); this map is from
Hg x D} to DS x DL for some &'. Tt can be inverted to a map (g, a,) — (C, a)
from a smaller double disk D%, x D}, to Hg x D} for some §” < ¢'. In this way the
theory can be parametrized by the renormalized parameters g,., m, and a,; it is
in particular analytic in g, for g, in D%, and the functions Cn(g,, m,, a,) are the
Borel sums of the ordinary fully renormalized planar series in g, with propagator
(a,p? + m2)~! (see section L5 for the definition of Borel summability).

We prove this theorem by an induction in index space from ¢ = p to ¢ = —1.
Let us study first in more detail (I1.5.7). The only third order graphs for the four
point function to be considered are Q3 and @4 in Fig.I1.5.1. Hence to third order
(IL.5.7) leads to:

Fodta=b S @) [ Oty

t+1=012<712<p

e Y gt / dtyd*RY,C (2, )0 (2, 2)C% (3, 2)C (y, 2)

14+1=i1234<71234<p
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LG S 9 / dtyd 2R, C™ (2,4)C™ (@, y)C (y, 2)C™ (3, 2)
t1+1=t1234<j1234<p

+ graphs with at least 4 vertices (I1.5.16)

where we use obvious notations igpe... = inf{iq, ip, ic, .-}, Jave... = SUp{ia, ip, ic, ...},

b, ¢ and d are respectively the planar combinatoric coefficients of the graphs @,
(the bubble) @3 and Q4 of Fig.IL.5.1, and the “useful” internal renormalization
operator RY , is by definition HheDu(H)ﬁ#H(l — 7). In the second term of
(IL.5.16) we have therefore:

R}, C" (z,y)C™%(x, 2)C% (y, 2)C (y, 2)

= Cil (ZIJ, y)Clz (ZIJ, Z)Cig (y7 Z)Ci4 (y7 Z) if 2‘34 < j12
R}, O (2,y)C% (2, 2)C™ (y, 2)C™ (y, 2) =
C (x,y)[C*2(x, 2) — C2 (2, y)C% (y, 2)C* (y, 2) if izq > jio (I1.5.17)

In the third term, the full amplitude factorizes as a product so that when one
internal operator (1 — 7;) is performed, the result vanishes. Therefore:

RY .C (z,y)C%(2,y)C* (y, 2)C™(y, 2)

= O (x,y)C% (x,y)C™ (y, 2)C* (y, 2) if i12 < jaa and izq < iy
R .C (x,y)C"(x,y)C%(y, 2)C%(y, z) = 0 otherwise (I1.5.18)

int

To obtain a recursion relation involving solely g/ and g/ ; at third order, one
should replace, in each third order term of (II.5.16) every gf with k > i+ 1 simply
by ¢ 41, since they are equal at first order. But in the second order term one
should reexpress g%, in terms of gf,,, taking into account the third order terms
that this operation generates. This results in contributions with a main bubble
H corresponding to the initial second order graph (hence with i =i+ 1), and a
reduction vertex corresponding to the counterterm for an other bubble h, gener-
ated by the second order recursion relation (I1.5.8), which we apply to reexpress
g%, in terms of g7 ;. This second bubble i may be inserted “transversally” or
“longitudinally”, in which case we associate this contribution respectively to the
graphs @3 and Q4. For )3, the corresponding counterterm completes the renor-
malization of h; namely the inner bubble A satisfies j1o > i34 > ¢+ 1 = i12: adding
its counterterm replaces precisely the operator RY,, by R,y = (1 — 77), the full
internal renormalization operator, except for a subtlety; the counterterm for in-
ternal subgraphs h with ¢34 = ¢+ 1 is missing. We add it and subtract it, so that
(3 gets full internal renormalization, and there is an exceptional term which is
—I—THT;:, with g = ih =1+ 1.

Similarly for ()4, taking into account the symmetry factor of the graph, miss-
ing counterterms for h to the right and 715 > i34 > i+ 1 = i12 and for h to the left
and jsq > 112 > 7+ 1 = 134 are generated. They correspond almost exactly to the
first case of (I1.5.18), so that the contribution for @4 becomes 0 as in the second
case of (I1.5.18), except again for the subtlety that the case i12 = i34 remains. But
combining this term with the exceptional term for the graph Q3, we reconstruct
exactly the product of two independent bubble counterterms 77y (with their
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full combinatoric coefficients), and with iy = iy = i + 1. The conclusion of this
tedious analysis is that to third order in g;41, (I1.5.16) becomes:

gl =gl =b > (gf+1)2/0“ (x,y)C" (x,y)d"y

t+1=012<512<p

+e > (9711)° / dyd* 2R O™ (1, y)C™ (2, 2)C% (y, 2) O™ (y, 2)

14+1=i1234<71234<p

+Hgl )Mo D C™ (x,y)C" (z, y)d'y}?

t+1=i12<j12<p
+ contributions with at least 4 vertices (I1.5.19)

It remains to check that the “contributions with at least 4 vertices” in (I1.5.19)
are unimportant. These corrections correspond to graphs with 4 vertices or more in
(I1.5.16) or are generated by the recursion which changes (I1.5.16) into (I.5.19).
Taking into account the form of the error terms in (I1.5.13) and (I1.5.10), we
expect a bound of the type O(%) + i720(e=%=9) for the sum of all these
terms. Such a bound would not be too hard to prove if one could directly combine
the uniform bound on usefully renormalized graphs of Section I1.3 with Theorem
I1.5.1. Indeed taking C large enough, one is certainly inside the convergence
radius of the planar power series; the remainder in (I1.5.16) for i + 1 = p can be
evaluated by O(g3) = O(p~*). By induction, one would remain inside convergence
radius of the series in (I1.5.16) for smaller i’s; the behavior (IL.5.13) would be
checked inductively and the series of contributions generated from (II.5.16) to
(I1.5.19) again would be controlled inductively. For this last bound one can simply
use the exponential decay in index space generated by phase space analysis to
obtain a uniform bound O((¢gf,;)*) = O(i~*) for series of contributions of the
type 3= ;sit e~ 00 > n>4(97) " an.

This program is basically right except for one subtle point: the amplitudes
appearing in (I1.5.16) are not exactly the usefully renormalized ones; in particular
no wave function renormalization is performed. We need to use the decay of
the effective constants to sum over logarithmically divergent mass-renormalized
bipeds. This is possible because there are at least two effective constants available
for each such biped. Hence the analysis sketched above remains correct, except
that graphs H with k bipeds, n vertices and iz > ¢ should not be evaluated naively
by the regular bound O(i~") but rather by O(i~("*%)) since each logarithmic
divergence “eats” the decay of one coupling constant. This small change would
not be relevant at all, except for the fact that the smallest possible H with k # 0,
the graph ()5 in Fig.IL.5.1, should not be considered as fourth order, but rather
promoted to third order, so that it becomes relevant for the correct value of 33 *.

The detailed analysis of the graph @5 is easy. The non trivial biped By
corresponds to lines 4,5,6. The logarithmic divergence is fully contained in the case
Q456 > 1123 and the corresponding (mass-renormalized) contribution is obtained by

* Of course the phenomenon discussed here at the level of graphs is well known
at the level of the Callan-Symanzik equation; the second order term in (I1.5.14)
reacts on the third order term of this equation.
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applying 75". Hence if e is the combinatoric coefficient for the planar graph ()5 the

full apparent third order contribution of @5 in (I1.5.16), up to O(logz) is simply:

2
A > / d4$d4yd4zC“(uvz’)%

1123 =1+1 k=is56>1123
1
(B2klog M)?

We generalize now Lemma I1.5.1 to the contributions in (I1.5.19-20):

{C’i2 (x,u)AC’i3(a:, 2)} C' (:c,y)C’i“" (:15,3;)0"6 (z,y) (I1.5.20)

Lemma I1.5.2 There exists numerical constants v3 and 63 such that:

v3log M = ¢ lim lim Z dryd*z...

i—00 p—00 ) )
t+1=t1234<j1234<p

R O™ (x,9)0%(z, 2)C% (y, 2)C*(y, 2) (I1.5.21)
o
23— lim 7. lim Z Z /d4a7d4yd4z...
B2 el e t123=1+1 k=iss56>i+1

. — 22 . ) 1 ) ) .
i (u, 2) Y 875' O (@, W) ACH (2, 2) e 5y € 0, 0) O (2, ) O )
(1L.5.22)

Furthermore the sum in (I1.5.21) converges exponentially and the generaliza-
tion of (I1.5.10) holds, namely differences between the right hand side of (I1.5.21) at
finite i and p and the left hand side are uniformly bounded by O(e=%(P=9)) 4 ¢=%%),

The limit in (I1.5.22) is more complex; up to exponentially small errors in
p — ¢ and ¢, we have an integral invariant under translation in index space, hence
it1<hep, k2 = const.[i™h — p~! + O(i7?)].

Finally by Lemma II.5.1 the third contribution in (I1.5.19) converges simply
to (B2log M)? with exponentially small corrections as p and 4 tend to infinity.
Therefore we obtain:

a contribution const. )

Lemma I1.5.3

9y — 9¢p+1 = B2 logM(gfﬂ)z +73 logM(gf+1)3 + (B2 log M)z(gfﬂ)g

) 1 1 logz Y
+5—z(g£’+1)2(; = ;) +O(=7) + (9/41)*0(e 6(p=i)) (I1.5.23)
Let us define:
B3 =3+ 63 (11.5.24)

The behavior of the recursion relation (I1.5.23) is investigated easily under
the initial ansatz (I1.5.15), even for complex C' with ReC large.

Lemma I1.5.4 For ReC' large enough, we have:

1
|g_p — (B2 log M )i + %logi + C| < ReC (I1.5.25)
2

i
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This is because we may rewrite (I11.5.23) as

1 1 Bz 03 log i —8(p—i
—— — — = [elogM + = ——=—+0 + O(e~8(p=0) I1.5.26
9¢p+1 gip 2 Boi Bap 2 i2 ) ( ) ( )
(I1.5.25) follows from the uniform summability of 2§, e=*=)  and the obvious
bound:
Z 75 S 62 Vi (I1.5.27)

We can now extend uniform bounds like Theorem I1.3 to the amplitudes which
appear in the particular expansion I1.5.3:

Lemma I1.5.5 There exists a constant K such that:

ST 92 (A EC9 R < KM@ (1 + sup [ps )Y (11.5.28)
n veG J

This bound is obtained by combining the bounds on usefully renormalized
amplitudes (Theorem I1.3) for the pieces of G without bipeds, the argument that
mass insertions do not create renormalon effects (see Theorem I1.3.2) and the
existence of at least two specific coupling constants of the right scale associated to
each dangerous biped; using the decay of these constants as expressed in Lemma
I1.5.4 the logarithmic divergence for these bipeds not only becomes convergent but
does not disturb the uniform nature of the estimate.

It is important to notice that the proof of Lemmas I1.5.3-4-5 is inductive.
For each scale ¢ from p to —1, Lemma I1.5.3 is proved first, then Lemma I1.5.4,
then the piece of Lemma I1.5.5 which deals with the subgraphs G¥ of G' (made of
lines with indices j > i). There is no logical loop, because the uniform bounds on
the remainders necessary for Lemma I1.5.3 at scale ¢ only depend on the bounds
(I1.5.26) for effective couplings of scales j > i, and on bounds of the type (I1.5.28)
for subgraphs H with ig > i.

Once the renormalization group “discrete flow” for the coupling constants g;
and the bounds (I1.5.28) are established by Lemmas I1.5.4-5 for all scales, it is easy
to complete the proof of Theorem I1.5.3. Using Lemmas I1.5.4, I1.5.5 and Theorem
I1.5.1, the series (I1.5.5) are absolutely and uniformly convergent, hence their sum
defines the planar theory with cutoff p. Furthermore every estimate and the sums
over index space being uniform in p, the effective constants g? have limits g; as
p — oo which still satisfy Lemmas I1.5.4-5. This constructs the theory without
cutoff. The analyticity result follows in the straightforward way from uniform
convergence of series term by term analytic. The results on the behavior of g,
and a, as functions of C' and a are obtained by considering the recursion relation
(IL.5.14) for the wave function constant in addition to the flow of the coupling
constant expressed in Lemma II.5.3.

Finally for Borel summability in g,, one checks directly the hypotheses of
Nevanlinna-Sokal theorem (Theorem 1.5.1). The region of Fig.IT.5.5 is exactly the
region necessary to apply this theorem (the true region of analyticity is in fact
much larger because the discrete flow (I1.5.23) still leads to an asymptotically free
theory (g, — 0 as p — o00) for g, at least in the region pictured in Fig.I1.5.6) The
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uniform Taylor remainder estimates (I1.5.2) are just an other exercise in establishing
factorial bounds (in this case solely due to the renormalon effects [Ril]). Since this
kind of bounds has been studied at length in Sect.Il.3, we leave this problem to
the reader.

It might be interesting at this stage to compare briefly what we have done
to the standard continuous renormalization group flows, limiting ourselves for
simplicity to the example of the 3 function. In the standard definition of the
Callan Symanzik or renormalization group equations the key role is played by
the ultraviolet 3,, function which is defined as dg”” g, (gren), Where gpep is the
renormalized coupling; g,, the bare coupling, is hold fixed, and ﬂg—“ is the
logarithm of the quotient between the scale x of the ultraviolet cutoff and the
renormalized mass, hence in our case where we work with a unit renormalized mass
which is fixed, x is equal to plog M. In the BPHZ scheme that we use, it is known
that there are formulas which relate this ultraviolet 4 function to renormalized
Schwinger functions F(AN) at zero momentum with one mass insertion A on one
propagator and the minimal subtraction prescription. This means that two or
four point functions which contain the mass insertion A should be less subtracted,
according to their true (improved) degree of convergence. The formula for the
ultraviolet 3 formal power series is [IZ]:

1 4
Bunlg) = [T@M—ﬂg)(m +4g
1+
This formula can be used for practlcal numerical computations of coefficients such
as By or 3. What is its relationship to the method described above? When we

compute the difference g7 — g 41 we compute cleraly a discrete analogue of the

dr (0)
d 2

] (11.5.29)

ultraviolet beta function with cutoff k = M?, but this function is not expressed as
a power series in the last (renormalized) coupling ¢£ but in the whole sequence of
previous effective couplings. Usually this is a better way of doing than expressing
it in terms of a single renormalized constant, an operation which generates useless
counterterms and renormalons. However in this particular case, to study the
behavior of the effective couplings it is practical to develop at least the first orders
of the equation in terms of the last coupling g, as is done above to third order. In
this way we see that the coefficients of the usual 3 series (I1.5.29) are not exactly
generated both because of the remaining ultraviolet cutoff and of a slice effect
due to the fact that our flow is discrete rather than continuous. More precisely
the condition that one propagator in our contributions to the flow is in slice ¢
is asymptotically the analogue of the mass insertion in (I.5.29). However since
our slices have finite thickness, there are some terms with several legs in the slice
(a situation of measure zero for infinitesimal slices hence for continuous flows).
These terms are the source of corrections to the § function such as the term in
(B2 log M)? in (11.5.23) which are characterized by a power of log M higher than
one. In other words if we develop the finite difference equation (I1.5.23) up to a
given finite order in terms of the last (renormalized) constant g, take p — oo,
divide by log M (since © = plog M and take M — 1, then order by order only
the regular contribution of the ultraviolet # function will survive, but in a scheme
with an infrared cutoff; in the limit ¢ — oo the small corrections to scale invariance
due to the mass disappear and we will find exactly the same coefficients than in
(I1.5.29) (this explains the two limits in (I1.5.9)).
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In conclusion the discrete flows considered in this section and later in part
III are naturally expressed in terms of effective quantities with effective constants;
they are the correct way to replace the formal renormalization group functions by
well defined ones. The standard formal power series are recovered when cutoffs
are removed and effects due to the discretization are removed.
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I1.6. The large order behavior of perturbation theory

Aussi loin que la science recule ses frontiéres,

et sur tout l’arc étendu de ces frontieres,

on entendra courir encore la meute chasseresse du poéte.
— Saint-John-Perse

In this last section on perturbation theory we no longer discuss large order
bounds for individual Feynman amplitudes, but consider the more difficult problem
of the exact large order behavior of the renormalized perturbation series. We will
meet again the problem of the large number of graphs in the ordinary ¢* theory,
and the renormalon problem for ¢}, and discuss how they shape the large order
behavior of the theory, using the convenient mathematical formalism of the Borel
transform introduced in section I.5. The rigorous results obtained so far are still
fragmentary and in our opinion a lot of interesting work remains to be done in
this area.

In the regular ¢* theory the total number of Wick contractions for graphs
(not necessarily connected) with n vertices and a fixed number N of external lines
is (4n + N — 1)!l. The number of connected graphs is of course smaller, but it is
rather easy to show that it is more than (const.)"n!?; indeed we may first build
a spanning tree in more than (const.)™n! different ways (apply Cayley’s theorem,
Sect.I.4, with coordination numbers bounded by 4), then still have (const.)™n!
different contraction schemes for the remaining lines.

In a theory like ¢ (the anharmonic oscillator), all graphs add up at any given
order with the same sign. Furthermore it is easy to check that any amplitude of
order n satisfies both an upper and a lower bound of the kind (const.)”. The
upper bound is simply Weinberg’s uniform theorem, although in this case it may
be obtained for instance in « space by simpler arguments. The lower bound is also
extremely easy in a space: simply integrate only over 1 < a; < 2 Vi and use the
fact that the number of spanning trees is bounded by 21%) < 4™(©) for an upper
bound on the Symanzik polynomial Ug.

Hence in this case of ¢7, taking into account the factor - in (I.4.1), the n-th
order of perturbation theory a, satisfies some bound of the type:

Kin! < (-1)"a, < Kjn! (IL.6.1)

for some positive constants K| and K. As a consequence, the radius of conver-
gence of the perturbative series is 0; we say in short that it diverges. Nevertheless
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a behavior like (I1.6.1), although incompatible with ordinary summability may
still allow Borel summability.

It is not easy to prove that the corresponding renormalized series diverge for
¢* in higher dimensions. BPHZ renormalization in two dimensions is equivalent to
Wick ordering, hence simply suppresses the graphs with tadpoles. It has been first
proved in [Ja] that enough graphs remain so that the n-th order of perturbation
series for ¢3 still satisfy a lower bound which implies divergence. For ¢ there is a
first non trivial mass renormalization which changes the sign of some amplitudes.
Lower bounds for sums with different signs is more difficult because one has to
rule out the possibility of systematic cancellations. The divergence for ¢3 was
proved in [dCR2], but no longer from a lower bound simply on the n-th order of
the series; the argument already mixes different orders. For ¢} a rigorous proof
is still missing; renormalization introduces changes of signs much more difficult to
track, so that a proof of divergence seems impossible except as a by-product of
a detailed analysis of the large order behavior. Significant progress towards this
goal has been made in [MNRS], [DFR], using the multiscale representation, and
the main goal of this section is to introduce the reader to this approach.

We turn now to a description of the rigorous results and heuristic expectations
on the large order behavior of ¢*. We will not comment on the large order behavior
of other models, except to notice that theories with fermionic fields have better
convergence properties due to the cancellations in the corresponding fermionic
determinants; this fact, a direct consequence of Pauli’s principle, will be used
extensively in the construction of the Gross-Neveu model (Sect.II1.4). The study
of the corresponding large order behavior of these models is much less advanced
than for bosonic theories, and is a beautiful open problem.

The large order behavior of ¢* is of course best understood in the one dimen-
sional case (anharmonic oscillator) (not to speak of the 0-dimensional case, which
is the study of the moments of the measure e—g" —aa® dx, for which explicit for-
mulae can been derived in terms of hypergeometric functions [Wig2]). There is a
long history of numerical and rigorous results on the anharmonic oscillator, using
BKW methods or the functional integral and steepest descent methods, reviewed
in [Si2]. But here we intend to put the emphasis on higher dimensions, d=3 and
mostly d=4. The first major progress in these cases came from a semi-rigorous
extension of the steepest descent to the functional integral of gzﬁé, called the Li-
patov method [Lip]. This method was developped and applied in [BGZ]. Let us
summarize now its guiding principle.

For simplicity the large order behavior may be investigated on the simplest
typical quantity for the theory with non trivial renormalized perturbation theory.
For instance in 1,2 and 3 dimensions we may use the pressure:

_ 1
D= A cop—oo A

log Zon = Y _(—g)"an (1L.6.2)
but in 4 dimensions the renormalized series for the pressure or for the 2 and 4 point
functions at 0 external momenta are trivial, so that the simplest quantity may be
the connected 6 point function at 0 external momenta, or the 2 point function at
a particular momentum, or the connected 4 point function at some symmetric set
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of external momenta. If C'y is the quantity of interest we write again:

CN == Z(_QR)RCLE (1163)

n

with gr the renormalized constant.
The Lipatov method concludes to an asymptotic behavior of a,, or af at large
n which is always of the type:

an =~ nla™.nl.c(1+ O(1/n)) (I1.6.4)

where a, b and ¢ are some constants. a depends only on the dimension (and may
also depend on some parameters of the theory, like the mass for d < 4). b may
also depend on which particular Schwinger function one is investigating (hence,
may depend on N) and ¢ depends on further details of the theory (in particular
in 4 dimensions, on the particular renormalization scheme and subtraction scale
which is used).

Since we are interested in universal features of the large order behavior which
are valid for the perturbative series of any reasonable quantity in the theory, a is
the most important constant in (I1.6.3). The Lipatov method predicts:

—inf S(¢)+2
’ (IL6.5)

a—=e

5(6) = 5 [©@u00" 0+ m*?) ~1og [ o* (IL.6.6)

where the infimum in (I1.6.5) is taken over the appropriate Sobolev space where
the functional (I1.6.6) is well defined.

Before providing a heuristic motivation for (I1.6.5-6), let us show that the
functional S(¢) is bounded below in dimensions d < 4 by virtue of some Sobolev
inequality. In dimension d < 4 indeed there exists a constant K; (depending on
m for d < 4) such that:

" ¢ < [Ky /]Rd(amaﬂqs + m2¢?)]? (11.6.7)

so that whenever ¢ belongs to the Sobolev space H'? in which the right hand side
of (I1.6.7) is well defined, it belongs also to L*. We call K;(d) the infimum of the
constants K; for which (I1.6.7) holds; this infimum is of course a minimum, i.e.
(IL.6.7) still holds with K (d) instead of Kj.

Similarly for C'°° functions with compact support (or under suitable decay
conditions at infinity) we have also for some optimal Ks(d):

2
" ¢* < [K»(d) /]Rd(ama“qs)} : (I1.6.8)
Remark that a in (I1.6.5) and K (d) are related by:

a= (4K,(d))? (11.6.9)
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since taking ¢ = af with [(9,f0"f +m?f?) = 1 we may optimize in (I1.6.6) and
get:

a2

g,lﬁ(i — log a4/f4) = ir;f(? — log 42/f4) =2 —log(4K(d))? (I1.6.10)

In dimension 1,2 and 3 the smallest constants Ki(d) and Ks(d) for which
(IL.6.7) or (I1.6.8) hold are different; K (d) depends on m, and for m # 0, K1(d) <
K5(d). But in the critical case d = 4 we have equality: K;(d) = K3(d). In fact in
dimensions 1, 2 and 3 the infimum in (I1.6.5) is a minimum, hence is attained for
a particular smooth minimizing function ¢y which by the variational principle is
a solution of the differential equation:

%
J %

for some constant \; we may find a particular ¢y with radial symmetry (to break

(—A + m?)po = A (I1.6.11)

the translation invariance of (I1.6.11)) which has fast decrease at infinity, and
S(¢p) depends on m. This is also true in 4 dimensions for the finite volume
analogue of S(¢), Sa,x (¢) (one has to specify some boundary conditions X on dA),
which attains its minimum for a particular smooth ¢g A x, and the corresponding
minimum K; o x(d = 4) of S dependson A and m. AsA — oo, Ky p x — Ki(d =
4); it can be shown however that the minimizing functions do not converge, that
Ki(d =4) = Ko(d = 4), the optimal constant for which (II.6.8) holds, which is of
course independent of m, and that the infimum of S(¢) is therefore a true infimum
(not attained). Furthermore the value of this infimum may be computed exactly:
Ki(d=4)=Ky(d=4) = ﬁ\/g [Aub], hence a = 523 in (I1.6.5). This change of
behavior in dimension 4 is of course due to the marginal character of the Sobolev
inequality (I1.6.7) in this case.

A crude motivation for the Lipatov prediction of the value (I1.6.5) of a in
(I1.6.4) goes as follows. Let us pretend that an ultra violet cutoff ,, and a finite
volume A,, (with boundary conditions X,,) may be imposed on the n-th order of
perturbation theory in such a way that k,,A,, — 0o as n — oo, but that as long
as the leading order behavior is concerned, aff and aX*A=+%= (the bare amplitudes
with cutoffs and no renormalization) are equivalent. (We will see below that this
assumption turns out to be justified in dimensions less than 4 but wrong for d=4).

Let us assume also that the restriction of connectedness in a,, is also unimpor-
tant as far as leading large order behavior is concerned. Then the leading behavior
of (—1)"af*/n! is the same as the one of

1 n
b, = /(5)2(/“ ) i, A (116.12)

For conceptual simplicity, let us choose the ultraviolet cutoff to be a lattice

with lattice spacing 6,, such that lim ¢,, = 0, and let us choose the dependence
n—oo

in n of A, so that the total number of sites in A,, grows only slowly, like n€. The
gaussian measure on the lattice may be written in terms of the ordinary Lebesgue
measure (see (1.3.13)). Rescaling ¢ to ¢ = % we get:
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n —(n/2){(8, 90" $) /n)+m? (4% /n)—210 ¢t /n?)}
bn:(_')a/e( I )/m)+m? (@ fn)=2log [, (9*/n) I1 o)
€A,

n —(n m2?— 4
_ (V)" (n—')2/e (n/2){(8u1hd" ) +m>ep 210ngn¢} H dy () (11.6.13)

TEA,
so that:

n nelogn n" n|l,—
(b) /" = e (eSO, (1L6.14)

which, as n — oo should tend to 1.e2||e=%(?)||,, hence to a by (I1.6.5).

To refine this crude prediction, one has to apply the steepest descent method
to the functional integral (I1.6.12), hence to expand the action around the con-
figurations which minimize S(¢). By a rescaling of ¢ the variational equation
(I1.6.11) is the same as the equation of motion of the theory (—A + m?)¢ = g¢3,
and these configurations are the non trivial classical solutions of finite action which
are called instantons. Expanding around these solutions to second order, as usual,
and performing the corresponding gaussian functional integral gives an explicit de-
terminant with which one can compute subleading coefficients at large order like
b and ¢ in (I1.6.4), and in principle a systematic expansion in 1/n. The Lipatov
method in this way analyzes the asymptotic behavior of perturbation theory at
large order and relates it to singularities on the negative real axis in the Borel
plane which are therefore also called instanton singularities. In the case of the
anharmonic oscillator these singularities are known to induce a corresponding es-
sential singularity at g = 0 corresponding to a cut along the negative real axis for
quantities like the ground state energy (I1.6.2). We do not develop further this
point of view here, refering to [Zin] for a review on instanton calculus.

However in the standard Lipatov argument as sketched above, the possible
effect of renormalization on large order behavior is neglected; more precisely it is
assumed simply to change the determinants corresponding to fluctuation around
the saddle points into renormalized determinants. This assumption is expected to
fail in the case of ¢, where renormalization affects in a major way the large order
behavior. As argued by Parisi and 'tHooft [Pal-2]['tH3], the factorial behavior of
single Feynman graphs that we met and discussed at length in Section I1.3 creates
corresponding singularities on the right hand side of the real axis in the Borel plane,
called renormalons. It happens for ordinary ¢* as well as for vector ¢* models
with N components that the first renormalon singularity on the positive real axis
is closer to the origin of the Borel plane than the first instanton singularity on the
negative real axis, so that the large order behavior of ¢} is in fact expected to be
governed more by renormalization than by the instantons of the Lipatov method.
For instance for one component ¢} the position of the first expected renormalon

isatt = 2/0 = %; in contrast the value ar;, = 2—3;2 above for the Lipato;/
behavior corresponds to an instanton singularity in the Borel plane at ¢ = —2%

hence farther from the origin by a factor 3/2.*
The existence of renormalons, if confirmed rigorously, would mean that the
¢4 series are not Borel summable, in contrast to what has been proved for ¢‘f7273

* There is no deep explanation yet for this simple rational factor of 3/2.
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[GGS],[EMS],[MS]. This fact is presumably related to the difficulty in defining a
non trivial ¢7 theory satisfying the axioms [Aiz][Fr5]. We return to this point in
Sect.I1l.4 with a weak coupling triviality theorem; for reviews on triviality, see
[Sok2][GaRi].

We recall now briefly the rigorously proved large order results. For ¢7, the an-
harmonic oscillator, Borel summability [GGS] and all of formula (I1.6.4) is proven
(with expected values of a, b and ¢) [HS]; the Lipatov method has been justified
[Sp3][Bre], and much is known about the analyticity properties of the correspond-
ing sums in the Borel plane, either numerically or rigorously (see [Si2],[Wig2]).
In two and three dimensions Borel summability has been proved by constructive
theory [EMS][MS] and the Lipatov method has been justified basically to leading
order only, i.e. up to the computation of the coefficient a in (I1.6.4) [Bre|[MR][FR].
Finally in 4 dimensions the results [MNRS][DFR] fall short from proving that the
large order behavior is really governed by the first renormalon. Many of these
rigorous results are therefore summarized by:

Theorem 11.6.1
a) The perturbation series for ¢ , 5 are Borel summable (in the Nevanlinna-Sokal
sense or in Watson’s sense [GGS][EMS][MS])
b) For ¢, 5 there is a disk of analyticity in the Borel plane of radius a=!,
where a is defined by (I1.6.5) and there is a singularity in the Borel plane at
t = —a~! (“instanton”) [Bre][MR][FR].
c¢) For ¢} there is a disk of analyticity in the Borel plane of radius ﬁl

- = % (the
optimal expected disk)[MNRS][DFR].

In dimensions 3 and 4 the comparison between expected and proven results
is sketched in Fig.I1.6.1.

The proof of item a) relies on constructive methods and we will return to
it in the next chapter; more precisely we will give a construction and prove a
Borel summability result for infrared ¢} which is general enough to apply directly
with straightforward modifications to ultraviolet ¢* in lower dimensions. Such a
method is certainly a bit of an overkill for the cases of dimensions 1 and 2, perhaps
even for dimension 3, but it is certainly not more complicated than the sum of the
specific proofs derived earlier for these lower dimensions, which did not use the
full machinery necessary in dimension 4 (multiscale expansion).

Similarly we will not discuss the proof of item b) which concerns superrenor-
malizable theories because the phase space language is not strictly speaking nec-
essary there and because we prefer to concentrate on the more difficult issue of
the four dimensional case. Let us simply state that item b) may be decomposed
into the proof of an upper and a lower bound of the Lipatov type. The upper
bound [Bre|][MR] may be considered a simple corollary of the four dimensional up-
per Lipatov bound which is discussed below (in dimensions 1,2 and 3, the usefully
renormalized series which appear below, in which mass renormalization may be
fully performed as in Theorem I1.3.2, coincide with the regular series since there
are only a few mass renormalizations). For the lower bound, which implies the
existence of a singularity at £ = —a~! we refer to [Bre][MR][FR] and notice simply
that in three dimensions the changes of signs induced by the single nontrivial mass
renormalization require a separate argument in which all orders of perturbation
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theory are mixed [FR]. In this sense the proven existence of an “instanton” sin-
gularity is still a weaker result than strict asymptotics of the Lipatov type for a,,,
which remains an open problem in dimension 3, even at leading order. Subleading
behavior (with the right constants b and ¢) remains also an open problem, even
for ¢3.

We turn now our attention to item c) of Theorem II.6.1 which we rewrite in
more detail as:

Theorem 11.6.2
There exists a function €(n) which tends to 0 as n — oo such that:

Ba

la®| < ! 5 (L4 e(n))” (T1.6.15)
where af? is the n-th order of perturbation theory for the ¢} model, and 3, = 9/27?2
is the one loop coefficient of the § function (see Sect.I1.4-5).

The proof of course generalizes to the N-component ¢} theory, in which case
Ba = (N + 8) /272

Our goal is to describe in some detail the proof of this theorem. We will skip
many of the technicalities, for which the reader is refered to the original articles,
but we will try to explain clearly the structure of every important argument. We
start by the following bound, proved in [MNRS]:

Theorem 11.6.3: Upper Lipatov bound
There exists a function €(n) which tends to 0 as n — oo such that:

|aUF| < nllagp)"(1+ e(n))" (I1.6.16)

and aU® is the sum of all usefully renormalized amplitudes (the theorem applies
also to aMfUR the sum of the mass-renormalized, usefully renormalized ampli-
tudes of Theorem I1.3.2).

Upper bounds of the Lipatov type are indeed very natural because of one key
simple observation: the critical fields which minimize the functional (IL.6.6) also
saturate the corresponding Sobolev inequality (I1.6.7) (see (I1.6.10)). Therefore
using the Sobolev inequality on the vertices [ ¢* in (I1.6.12) should lead to an
upper bound of the Lipatov type with correct value of a. In contrast a lower
bound of the Lipatov type typically requires a more complicated analysis on the
speed at which, at large order, functional integrals like (I1.6.13) become peaked
around these minimizing configurations.

However using a Sobolev inequality in (I1.6.12) replaces a ¢? local vertex
by two (disconnected) ¢? vertices (with derivative couplings). There is a loss of
connectivity which prevents one from applying the key observation above in a too
naive manner. It is here that phase space analysis becomes useful. The outline of
the strategy is as follows. Either the graphs contributing to a, or b, are spread
over a large number p of cubes of the series of scaled lattices naturally associated
to the multiscale decomposition, or they are concentrated in a few such cubes.
The transition is somewhat arbitrary but may be taken at p ~ ﬁ for some
small 6 > 0. In the first case, using the by now familiar horizontal and vertical
decay associated to phase space (recall that such decay requires the use of “usefully
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renormalized” expansions) we should prove that the corresponding contributions
do not contribute at all to the leading behavior at large n. In the second case, one
should think of the vertices as densely packed into small areas of phase space. In
this case one can apply the Sobolev inequality; the loss of connectivity is harmless
(as far as leading large order behavior is concerned) because the total volume is
then small.

Returning to the language of Sect II.3, we introduce the triplets (G,F, u)
made of a graph, an assignment, and a forest F which is safe for u, and the
corresponding integrands

Zarw= [ Tl (O -7)Zawn (I1.6.17)

g€eF geH, (F)

where Zq , is as in (I1.4.8) the ordinary Feynman integrand for the assignment .
Useful renormalization corresponds to the case F = (), hence the bound (I1.6.16)
may be written as:

2. / 1 4201 Zcp ) < nllarip]" (1 + €e(n))" (11.6.18)

(G F,u)in(G)=nF=0" veG

Next we decompose the (usefully renormalized) perturbation theory according
to the multiscale slicing, as in Sect.I.3. The crucial point is to decompose the
series in two according to whether the graphs and assignments (G, ut) spread over
a large region of phase space or not. To measure the size of a region in phase
space, it is natural to consider that distance scales are the inverse of momentum
scales. For each scale ¢, ¢ = 0,1, 2... this leads one to introduce the scaled lattice
D; made of cubes of side M ~%, and define D = U;D; (see Fig.I.6.2). Now at a
vertex v of a graph sitting at x, there are at most 4 propagators which meet, with
scales i1(v), i2(v), i3(v) and i4(v), the maximum being e, (p) by (I1.4.4), and we
may associate to v the set of the four cubes Ay, .. Ay, A; € Dy (,) to which w,
belongs. If we repeat this for each vertex of a graph, we obtain a region which is
the natural domain in D of the contribution associated to (G, ). This domain
Xyert(G, u) C D is simply obtained by coloring the cubes of D which contain the
meeting of a line at a vertex in our standard representation Fig.I1.1.2 of phase
space (see Fig.I1.6.3). It will be called the “vertex domain” of the contribution in
phase space, and a good measure of its size is simply the total number x5 (G, 1)
of cubes in it.

However there is a problem with this simple approach. Remember that our
strategy is to bound crudely the contributions spread over large domains of phase
space (they should be small, anyway), and to apply the Sobolev inequality only to
the sum over all graphs spread over a small domain of phase space. The Sobolev
inequality (I1.6.8) in a finite volume X applies with the same constant as in infi-
nite volume only for fields in HJ (Xy), the Sobolev space of functions ¢ with square
integrable gradients which vanish on the boundary of X, which is a natural subset
of H}(IR*). But the sum of graphs that we are studying is related to an integral
(f Xo ¢H)"dpc(¢) where the gaussian measure duc(¢) corresponds to the propa-
gator C'. Using this propagator creates a problem because the sample fields for
duc are not in Hy(Xy). This is not a regularity problem since in a finite region
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of phase space the propagator has an ultraviolet cutoff of type (1.3.7) so that the
sample fields are very smooth, but the problem is that these sample fields have no
reason to vanish on 0.Xy. This would be however the case for instance if we could
use a propagator in which the Laplacian entering the propagator’s definition has
Dirichlet boundary conditions on Xy (for the definition of gaussian measures and
their support properties, see [Erl],[Sil]). For such a task it is convenient to in-
troduce the Wiener path representation of the propagator [GJS],[FO]. Fortunately
this representation is fully compatible with the parametric representation, hence
with cutoffs (I.3.7) or (I1.1.3), since « is simply the proper time of the path. It is:

201D
. 2
C'(z,y) :/ dte™™ t/Pt(:U,y)dw (I1.6.19)
M—2i

where P;(z,y)dw is the Wiener measure on the sets of all paths starting at = at
time 0 and ending at y at time ¢.

Our goal of using the Sobolev inequality then leads us to consider a larger
domain in phase space called the “vertex and propagator” domain. In [MNRS]
this domain arises in a natural way as the result of an inductive cluster expansion
of the Glimm-Jaffe Spencer type [GJS]. Since we postpone the definition of cluster
expansions to the next section, we will give an equivalent global (set-theoretic)
definition of this domain.

We decompose first each propagator in the perturbative expansion as in
(I1.6.19), so we rewrite the perturbative expansion as a sum over triplets (G, p, )
where G and p are a graph and an assignment, as before, and 2 is a set of I(G)
paths wy,...,wy); the first two sums are discrete, but the sum over {2 means a

product of Wiener integrals Hi(ﬁ) [ Py, (z,y1)dw;. For this generalized multiscale
representation, the straight lines which represent propagators in the standard pic-
ture (Fig.I1.1.2) should be replaced by the more complicated paths of Fig.I1.6.4.

Then it may seem natural to define the “full propagator domain” as the union
over [ of all the cubes of D;,(,,y visited by the path w;. However this naive domain is
again not the correct concept in this case, because we look for a definition such that
when the propagator domain is large (compared to n/(logn)?), the corresponding
contributions are small (in the sense of Lemma II.6.2 below). This will not be the
case with the above naive definition, for instance when the vertex domain is small
and the “full propagator domain” is large only because of a single propagator
whose path extends over a large set of cubes. In fact a definition adapted to our
purpose is the following:

Let us consider a subset X = {Aq,...,A;, ..., Ay} of D. We say that this subset
has the property HZ (for “horizontally connected”) with respect to (G, u, ) if and
only if for any A; € X ND; (hence for any cube of X of scale ¢) there is a distinct
line [; of the same scale (ij; (1) = i) such that the corresponding path w;; visits
Aj. (The important fact is that all the lines /; have to be different: I; # [; for
j#3).

Then we define the propagator domain X" ?(G, i, Q) of (G, p, ) as one (ar-
bitrarily chosen) subset of maximal cardinality 25 "(G, u, Q) = |XT"P(G, p, Q)|
among all subsets which have the property HZ. Associated to this propagator do-
main, there is therefore a particular set of distinct lines I;, j = 1, ..., 25 P(G, u, Q),
such that each wy, visits the corresponding cube A; of X{"P(G, 1, Q). We choose
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a particular set of such lines, L(G, i, $2), and call it the horizontal connections
of the propagator domain. It is important to notice that for [ € L(G, u, ) the
path w; does not necessarily stay in X§"7 (G, i, ), but for I not in L(G, u, ), the
path w; must be confined in the cubes of X" P(G, u, Q); otherwise x5 " (G, p, )
would not be maximal (see Fig.I1.6.4 for examples of the natural naive propagator
domain and of the propagator domain as defined above).

That this definition is an appropriate one for our purpose will become clear
below; but it is not the unique one possible®, and it requires some arbitrary choices,
which is unfortunate on an aesthetic level, but does not seem to be easily avoid-
able: arbitrary choices appear in most cluster expansions, often in the form of an
arbitrary ordering of some finite set of geometric objects.

We define now:

Xo(G, 1, Q) = X§7H (G ) UXE PO and - wo(G, 1, Q) = [Xo(G, 1, Q)

The proof of (I1.6.18) is decomposed into two steps. Fix § > 0, and write:

UR UR UR
an, = an,small + an,large (11620)
where a;, smqu is the sum over contributions with xo(G,u, Q) < n(logn)~%, and

An,large 18 the complement. We want to bound an large’ We may again distin-
guish two subcases. Let 8’ > 0 be such that § << ¢’. The first subcase is when
28 (G, 1) < n(logn)™®, and we call the sum of the corresponding contribu-
tions af{ Iffw ge prop* In this first subcase, we remark indeed that we must have
P (G, Q) > (n/2)(logn)_‘S (since § << ¢'). In the second subcase, when
3G, 1) > n(logn)~°, the sum of contributions is called aVF large vert:
Then our first goal is to explain, without entering all technicalities, the fol-

lowing bounds:

Lemma I1.6.1 For some € (depending on ¢):

n!

|an Jlarge p?"op| W (IIGQla)
n !
|an Jlarge vev“t| = <C m (116211))

Let us start with (I1.6.21a). The reason for which a¥ % Targe prop 15 small is that
many propagators are longer than their typical decay scale. More precisely since
there at most const.r* cubes in D; at a distance less or equal to r M ~% of any given
cube of X¥¢Y(G, i), there must be at least half of the cubes of the “propagator
domain” which are far (in the relevant scale) of any cube of the “vertex domain”
of the same scale. More precisely, at least half of the cubes A of X§"?(G, u, )

must satisfy an inequality:

!

dist(A, XY (G, p) ND;) > eM~i(logn) ©  if A € D; (IL.6.22)

* To test its understanding of the problem we suggest that the reader tries to
invent an other one, for instance with at most two cubes associated to distinct
propagators.
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The full propagator C(z, y) satisfies a bound like (II.1.6), but the conditioned
propagator:

Ar=20i=1)
Ci(z,y) = /M—2' dte_mQt/Pt(x,y)XA(w)dw (I1.6.23)

where ya(w) is the characteristic function forcing w to visit A, satisfies a more
detailed bound:

Ci(oy) < K M 21— M [dist(z,A)+dist(A,y)] (I1.6.24)

where 7 is a small number (the notation 6 like in (II1.1.6) would be confusing).

This bound is intuitively obvious if we recall that the travel time on paths
acts as an infrared cutoff. To prove it is a standard exercise in using the “additive”
Markovian structure of the Wiener measure, and decomposing the path w into two
pieces by introducing the first hitting time of w with A (see e.g. [GJS]). (Actually,
remark that in the literature it is standard to use as primary objects the faces
which make the boundary of the cubes rather than the cubes themselves; this
point of view helps to write a more systematic cluster expansion).

We may collect half of the decay (I1.6.24) from the propagators of the hor-
izontal connections L(G, i, ) and combine it with the information (I1.6.22) to
extract a factor

(n/4)(logn)~°

I o—nllogn) T _ —n'n(logn) T (11.6.25)
j=1

(Remark that here it is crucial to know that each cube of the propagator domain
is associated to a distinct line of the graph).

We may take ¢’ — 56 > 0. After extraction of the factor (I1.6.25), propagators
still satisfy the bound (IL.1.6) (with a different constant for the decay). Hence
(now forgetting the restrictions introduced by the condition large prop) we can
apply Theorem II1.3.1-2, and bound |ay, iarge prop| by K"nle="1°87)° for some € >
0; roughly speaking K™ comes from the estimate of Theorem I1.3.1-2 for single
amplitudes, n! comes from the number of graphs, and e~"(°8™)" from the factor
(I1.6.25). This establishes (II.6.21a).
The second subcase, agfm ge vert> 18 bounded according to a slightly different
idea: it is no longer the value of each individual amplitude which is small because of
propagators longer than usual, but it is “statistically” that the sum of amplitudes
is not as large as ¢"n!, as should be expected from the number of Wick contractions
divided by the vertex symmetry factor, whose leading behavior is 4%,” ~ nl. Let
us illustrate first on a simpler example this idea, which one may call the “local

factorials” principle.

Lemma I1.6.2: the local factorial principle

Let us consider the ¢* theory (in any dimension) with fixed cutoff K = 1 (so
only the first slice ¢ = 0 is kept). Let n(A) be a family of integers associated
to each cube A € Dy such that ), n(A) = n. We call ai™ ™} the sum of the
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contributions of the graphs which have exactly n(A) vertices in each A. There
exists a constant K such that:

jal" I < K" ][ n(A)! (I1.6.26)
A

The proof of this local factorial principle uses the exponential decay of the
propagator, which suppresses strongly the Wick contractions which join distant
cubes. The result has the same form (up to a large value of K) as if in fact all
Wick contractions between distinct cubes were suppressed, which means that the
usual factorial n! reflecting the number of Wick contractions of 4n fields divided by
the vertex symmetry factor n! is replaced by a product of local such factorials in

each cube. To prove the lemma we start with n vertices. The multinomial factor
n!

1_[A n(A)!
by choosing for a given field, first the cube containing the field to which it contracts,

then the particular field to which it contracts, and iterating this process until all

allows to distribute them in the cubes. Then we build Wick contractions

the fields are exhausted. The first choice (of the cubes) lead to a sequence of
sums, each of which is controlled by the decay of the corresponding propagators,
and leads to a constant per sum hence to ¢”. The second choice (the field in
the cube) leads to a factor ¢™ [], n(A)!?, provided at each step j, j=1,...2n, we
contract a field in a cube A; with contains a maximal number n;(A) of remaining
fields not yet contracted; hence the choice of the field in A; to which it will contract

will cost a factor n; <\ /nj.n;. and the total process will cost a factor bounded by

[TA n(A)*(2) as announced. Taking the multinomial coefficient into account
achieves the proof of the Lemma.

We remark that when the number p of occupied cubes gets large, the behavior
of [[n(A)! may become significantly smaller than n!; it is certainly bounded by
Z—;. This motivates the following stronger result, in which the domain of occupied
cubes and the numbers n(A) are no longer given, but summed up:

Lemma I1.6.3: Large “vertex domain” bound.

Let p < n be an integer. For the one slice model , the sum of all perturbative
contributions to a connected Schwinger function which contain vertices in exactly
p different cubes, a,, , satisfies:

n!

anap S Kn p'

(11.6.27)

To prove this result it is natural to use a (single-scale) cluster expansion like
the one introduced in the next section (III.1). Roughly speaking, the convergence
of the Brydges-Battle-Federbush tree cluster expansion, Theorem III.1.1, applied
to this problem, means that we can choose the cubes containing the vertices and
build a tree of Wick contractions connecting them at the cost of only ¢? (hence
without any factorial factor). This tree eats up 2p fields, and the remaining Wick
contractions create only a factor of order (4n —2p)!! ~ 2p—’§!, which makes the result
plausible. The true proof, however, is more complicated because there is some
book-keeping of vertex symmetry factors to do, and we give it in section III.1, as

an example of application of the (single slice) cluster expansion.
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We understand now that when the contributions agﬁl rge vert AT€ Testricted to
the O-th slice, the desired bound (I1.6.21b) holds, since ——2—— < ¢?—nl_
(n(logn)=4")! en(logn)

UR

n,large vert
to extend the local factorial principle and lemma I1.6.3 from a single slice model

to the general phase space situation. This can be done because the vertical and
horizontal exponential decay of usefully renormalized perturbation theory is the

for some €. Hence to extend this bound to a is the same thing than

correct generalization to phase space of the horizontal “spatial decay” of the single
slice model. However this requires the generalization to phase space of the single-
slice (standard) cluster expansion (which is what we call a “multiscale cluster
expansion”), and even with this tool the details of the combinatoric ([MNRS,
section 3 and Appendix B) remain complicated. Since the next chapter of this
book is devoted to cluster expansions and their use in constructive theory, we
suggest that after studying this chapter, the interested reader returns to (I1.6.21b)
and builds up its own proof for it, using the simplest possible multiscale expansion
(of the “pair of cubes” type) rather than the one of [GJS],[MNRS] (to use section
3 of [MNRS] for some clues is of course allowed!). Indeed for a proof of (I1.6.21b)
a cluster expansion which localizes only vertices is clearly enough; it is only for
(II.6.21a) and Lemma I1.6.5 below that a cluster expansion which localizes both
vertices and propagators is required.

It remains now to apply the Sobolev inequality when the total vertex and
propagator domain in phase space is small. We follow the same approach as for
the large vertex domain, namely we start with an easy lemma as a motivation:

Lemma 11.6.4 Upper Lipatov bound in finite volume
Let us consider the ¢} model with fixed ultraviolet cutoff k. Let X, be a region
of total volume |Xj| < Toanys With 0 < 6 < 1. There exists €(n) such that

lim €(n) =0 and:

% (@) | 6" @)da]” < (14 em))nl o, (I1.6.28)

where we recall that ar;,, the Lipatov constant, is defined by (I1.6.5), hence a =
(4KLip)?, Krip being defined by (I1.6.7-8) for d = 4.

Proof Applying the Sobolev inequality (I1.6.7) we obtain:

[left hand side of (I1.6.28)] < %K%?p/duﬁ(gzﬁ)[ i 8M¢8M¢—|—m2¢2]2n (I1.6.29)

Integrating over du,;(¢), we get a sum over closed loops, each propagator being
(—=A+m?)C,, where Cy, the cutoff propagator (1.3.7-8) is smaller than (p*+m?)~1
in Fourier space and decays exponentially in direct space (over lengths of order
k~1). Therefore each closed loop contribution is bounded by C|Xg|, where C is
a constant depending on k (the single factor | X| takes into account the single
translation invariance of the connected loop). Hence:

/ ap(6)] /X 0,00" 6 + m*¢?] ™"
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= P t1 ety Lee-bp:
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=1
( ) 2n
(CI1XolP2>m > Ch, (11.6.30)
j2

p=1

where C% is the binomial coefficient, p is the total number of closed loops, and
t1,...,t, are the number of vertices in each loop. The combinatorial factors arise
from the number of possible Wick contractions for each loop, which is easy to

compute. Since C'|Xo| < we have obviously:

(lognn)5 ’
(C'|Xo|
Z ct. | 0 e“mo8m) " for some e (I1.6.31)

Remenbering (2n)! < 22*(n!)?, this proves the lemma.
It remains to extend this lemma to the phase space context:

Lemma I1.6.5
oy | < nlarip]™ (14 €(n))” (I1.6.32)

Several difficulties arise when one tries to extend Lemma I11.6.4 to Lemma
I1.6.5. First in Lemma I1.6.4 the region Xy is given, but in Lemma I1.6.5 we know
only that it is small and we must sum over all possibilities. A similar difficulty
separates Lemma I1.6.2 from I1.6.3; and we said that the solution requires a kind of
cluster expansion. This is true also here, and this cluster expansion must be a mul-
tiscale one which localizes both propagators and vertices. Again here we provide
simply minimal guiding remarks, in order to avoid overlap with the next chapter. A
cluster expansion is, roughly speaking, an algebraic machinery to define a domain
and select a particular explicit subset of connections between the different regions
(here, cubes) of the domain, which ensure sufficient decay between these regions,
so that one can sum upon the position and shape of the domain. Concretely this
is usually done by Taylor expansions in interpolating (“decoupling”) parameters.
But in perturbation theory (which is free of the stringent positivity requirements
of constructive theory) these interpolating parameters are not strictly speaking
necessary; in [MNRS] a mixed approach is used in which for the horizontal (in
the sense of Fig.I1.2.1) cluster expansions, interpolating parameters are used, but
for the vertical connections, a set of vertices with fields in different slices (vertical
dotted lines in our standard multiscale representation) is selected in a set-theoretic
way (i.e. without interpolating parameters and Taylor expansions). Here since we
define the full “vertex and propagator domain” in a set-theoretic way it is more
natural to select the set of horizontal connections also in a set theoretic way, so
that no interpolating parameters and Taylor formulae are ever needed; this set is
simply L(G, i, ), defined as above. This simplifies some details in [MNRS].

All together this process selects particular propagators and vertices which
connect together the vertex and propagator domain, and contain enough conver-
gence factors to realize the vertical and horizontal exponential decay between its
cubes, hence to solve the problem of summing over all such possible domains.
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Roughly speaking, for convergent almost local subgraphs, it is enough to select
vertices in them with at least 5 external fields of lower momenta. When divergent
subgraphs of the almost local type appear in some places, the corresponding useful
counterterms are associated to them. We may select all the external vertices of
these subgraphs and let the corresponding subtractions act on their external lines.
In both cases vertical decay is generated, the main problem being the burden of
notations. The price to pay is simply that all fields hooked to selected vertices
cannot be included in the set of remaining fields to which the Sobolev inequality is
applied. However an important point is that, as a whole, the number of fields con-
tracted into horizontal connections or hooked to selected vertices remain bounded
by const.xo(G, 11, 2), hence by const.w. Hence the remaining fields are vastly
the majority.

There are still implicit restrictions on the Wick contractions of these remaining
fields (for instance the ones who tell that G itself must be connected). We can now
lift all these restrictions, (hence producing an overestimate for agﬁma”). Then
the remaining fields may be written as a single functional integral of the type
f(fXO oM dpx,(¢) and no longer developped into Feynman graphs. Remark
that we use the word “field” for simplicity, but since Feynman graphs rather than
fields were our starting point, one should more precisely say that the remaining
“pieces of Feynman graphs” are written as a single functional integral. Also our
notations are very loose. In this integral [([ X ¢M)" dpx, (¢), for simplicity we
did not decompose the field ¢ as the sum of fields associated to each slice (using
(IL.1.5)) as should be done in fact. Also for simplicity a single notation Xy recalls
the restrictions over the range of integration for vertices coming from the definition
of the vertex domain, and the restrictions on the propagator, hence on the gaussian
measure corresponding to the definition of the propagator domain. The important
point to stress is that this definition is chosen so that although the paths of the
propagators [; of the horizontal connections do not necessarily lie in the “vertex
and propagator domain”, all the paths of the other propagators do. This implies
that the gaussian measure dpy, with which these remaining fields are integrated
is supported on fields which have their support inside this domain and vanish,
together with their gradient, at the boundary 0X,. Hence these fields do obey
the (infinite volume) Sobolev inequality. Therefore we can apply the Sobolev
inequality in the manner of Lemma I1.6.4 to this functional integral. Since the
number of cubes in phase space turns out to be, as expected intuitively, the correct
factor which generalizes the volume | Xj| in Lemma I1.6.4, Lemma I1.6.5 follows.
This completes our sketch of the proof of Theorem I1.6.3.

Finally we will sketch how the Lipatov upper bound on usefully renormalized
series combines with an analysis of the recursion relation for effective coupling
constant in order to obtain Theorem I1.6.2 [DFR|. We will need in fact the slightly
more detailed corollaries of the analysis above:

For any ¢ > 0 there exists a function €(n) with lim =0 and
n—oo

S T dnlZemmle® e < g (1 + e(m)”
(G,F,1);n(G)=n,F=0 veG
(11.6.33)
where 4,,4,(,) is the maximum index in p. This bound will result from the fact that
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in index space the exponential decay rate is at least 2, since the worst superficial
convergence degree is at least 2 after useful renormalization has been performed.
After the factor e(?=8)ima=(1) of (11.6.33) is included, there remains indeed a vertical
exponential decay with rate at least 6.

We need also related bounds for the 4 point counterterms:

Z / H d’”v|Z?G,F,u)|€(2_6)[im”(“)_iG(F)]

(G,F,u) veG
n(G)=n,N(G)=4,F=0
k<ig(F)<e
<(e—Fk+ )nlarip]" (1 + €(n))” (11.6.34)

where Z° is the coupling constant counterterm obtained by applying 7 instead
of (1—7¢) in (I1.6.17). Remark that now we have only exponential decay between
the maximal index 4,4, (1) and the minimal index i (F) (as defined by (I1.3.34))
in G. There is one global translation invariance in vertical index space for G
corresponding to the logarithmic divergence of a coupling constant counterterm.
These features explain the form of (I1.6.34).

Similarly:
S [ TL el e -iee)
(G7F7M) veEG
n(G)=n,N(G)=2,F=0
k<ig(F)<e
< M Pnlag,]" (1 + e(n))" (IL6.35)

where Z° is the mass counterterm obtained by applying 72 instead of (1 — 75)
in (I1.6.17). This bound reflects the quadratic divergence of a mass counterterm
(which in practice in the case of useless counterterms is always compensated by
the quadratic convergence of one of the external legs of G).

In [DFR] the renormalized perturbation series is then recast into a form which
is not exactly the effective expansion of Sect.Il.4, but an expansion intermediate
between this one and the renormalized expansion. More precisely only the useless
counterterms for the subgraphs isomorphic to the bubble are resummed into ef-
fective constants, and the other useless counterterms for all subgraphs except the
ones isomorphic to the bubble are kept in the expansion. This may seem compli-
cated and not very natural, but it has the advantage of leading to a very simple
recursion rule for effective constants which is simply a second order polynomial
[IDFR]:

9'(9,) = ¢ (gr) + Y (i = 19" (9,))” (I1.6.36)

where Y'(7) is the value of the bubble graph with minimal index i:
Y(i)y=b > d*zC7(0,2)C% (x,0) (IL.6.37)
min{j1,j2}=i

b being the symmetry factor of the bubble. The advantage is that this simple
recursion leads to an easy bound on the Borel transform of the product of effec-
tive couplings associated to a contribution (G, u, F). This product DR . r) =
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[T g¢* ™), using (I11.6.36-37) satisfies indeed:

veG
|B'(DR (G ,.7))(b)] < 7|b| e 0§j<§az(u)Y(j)|b|
|b|n_1 |b| B2 (p)+const
elblBzimas (1 : (I1.6.38)

~(n—1)!

where 3, = 9/27? is the coefficient in Theorem I1.6.2, and the modified Borel trans-
form (easily related to the ordinary one) is simply B'(3_, 51 angy') = 3,51 %.
Then in [DFR] some analysis of the useless counterterms is performed by com-
bining the bounds (II.6.34-35) with some tedious combinatoric arguments. The
outcome is that as long as |b| < 2/@ the bound (I1.6.38) essentially tells that
there is still vertical index space decay and (I1.6.33) leads to analyticity in the
Borel plane, because the Lipatov constant is bigger than 2/8s by a factor 3/2.
Theorem 11.6.2 then follows.

The use of a modified effective expansion is a technical device not very ap-
pealing. Also Theorem I1.6.2 remains unsatisfactory. We would like to rule out
possible (“miraculous”) cancellations and have a proof of the existence of the first
renormalon singularity at b = (2/2, by showing that some derivative of B(b), the
Borel transform of the renormalized series blows up at this point. This result would
be the first direct proof that the ¢} series diverge and are not Borel summable.
Ecalle’s theory of resurgent functions [Ec] (see also [GKT]) may be relevant for
this difficult problem, because it gives information on the asymptotic behavior
of the Borel transform of recursive relations much more general than (I1.6.36).
However the problem is difficult, because the natural approach would be to define
rigorously the full 4 function. It is not yet clear whether this is possible in the
BPHZ scheme [Kop]* From [FMRS5] we know that the 3 function for infrared ¢*
is Borel summable in terms of the bare coupling; transcribed to the ultraviolet
problem these results only mean that the 3 function of the massive theory with an
ultraviolet cutoff M* is Borel summable in terms of the renormalized coupling in
a disk which shrinks as p~! as p — oo. If we cannot use the full ultraviolet 3 func-
tion the only available approach seems to improve on the explicit resummations
of [DFRJ; if they could be extended to third order graphs, so as to reconstruct
the first two terms of the  function rather than the first one, a proof of existence
of the first ¢} renormalon might become possible, in particular in the case of a
vector model with large number of components, in which remainder terms might
be bounded in % so as to exclude the possibility of miraculous cancellations.

This completes our review of the mathematical problem of ¢} large order be-
havior. Although our guided tour of [MNRS]-[DFR] is no mathematical substitute
for more rigorous proofs, we hope that it may provide some help in understand-
ing Theorem I1.6.2. Also we think that a study of this problem, in particular of

* In the minimal subtraction scheme based on dimensional regularization there
is some belief that the [ function should be Borel summable [BDZ], but a proof
may have to wait until constructive theory finds a non-perturbative way to define
dimensional regularization...
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the Lipatov upper bound, provides a natural introduction to the main theme of
constructive theory, hence to the next part of this book.

Indeed although at first sight the large order behavior of ¢* is a purely per-
turbative problem, we see that for this problem the language of Feynman graphs
reaches its limits, and functional integration becomes unavoidable, precisely at the
point where the Sobolev inequality is used to gain information on the collective
behavior of the graphs. Very similar phenomena occur in constructive theory.
The main theme in constructive theory, as we shall see now, is indeed exactly to
sort out explicitly some critical connections between regions of phase space (by a
cluster expansion), but to treat the rest of the theory as a functional integral. In
constructive theory the goal is no longer to apply a Sobolev inequality to this rest,
but it is still to take the functional form into account to gain some information
which is hidden at the level of Feynman graphs, for instance the positivity used in
“domination” or large fields bounds.
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PART III: CONSTRUCTIVE RENORMALIZATION
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III.1 Single scale cluster and Mayer expansions

Cluster and Mayer expansions are key tools in many areas of mathematical
physics. Introduced in constructive field theory by Glimm, Jaffe and Spencer to
complete the construction of ¢35 [GJS], they have been improved or generalized over
the years, in particular by Brydges, Battle and Federbush [BrFe][BaF1-3|[Bat].
Unfortunately these expansions had for a while a reputation of being heavy to
handle. In this section we try to dispel this impression by underlying the main
facts behind their convergence. We do not try to present the best techniques or
the optimal bounds. Our goal is simply to introduce beginners to the paradise of
expansions; for a more complete review we suggest the reading of [Bry].

In this section we work always in a single momentum slice, for instance the
slice with index 0 in phase space. In other words we have both fixed infrared and
ultraviolet cutoff. Nevertheless we have in mind to use the single scale expansion
as the building block for the multiscale expansions of the next section. This gives
us some flexibility which we would not have if we were forced to treat as far as
possible models with a single scale expansion. For instance, up to some extent
the way the slicing is done, hence the form of these cutoffs may be chosen at will.
In particular we can always require the sliced propagator to have fast decay at
infinity, for instance exponential decay.

Taking advantage of this simplifies some arguments. For instance once the
propagator decays sufficiently fast, we can use what we call the “volume argu-
ment”. This means simply that in a finite dimensional lattice of cubes, there are
not many cubes close to a given one. This simple observation, combined with
the rapid decay of the propagator, simplifies often the combinatoric which arises
within the expansion.

We describe first how to recast a gaussian measure perturbed by a small sta-
ble interaction in the form of a polymer system with hard core interaction: the
very name of polymer comes from this “excluded volume” effect, hence from the
hard core interaction. This step is what we specifically call the cluster expansion.
Then we show how to remove the hard core interaction and compute normalized
quantities (or the pressure of the system). This is what we call the Mayer expan-
sion, and it allows to control the thermodynamic (or infinite volume) limit. This
Mayer expansion is really a systematic way to compute the logarithm of a grand
canonical partition function. It would be an interesting exercise, which we leave
to the reader, to apply this expansion formalism to ordinary perturbation theory
(which may be considered as a grand canonical Bose gas of vertices). With this
formalism one could for instance recover the reasons for which connected functions
are sums of connected graphs and for which the combinatoric of the Bogoliubov
recursion works.

The typical situation we study is a massive gaussian measure dju(¢) with an
ultra violet cutoff, perturbed by a g¢* interaction with g small. The measure
could also be massless but with both infra red and ultra violet cutoffs (remember
that it should correspond to a momentum slice.) This seems a somewhat trivial
situation, but remember that even in the finite volume the perturbation expansion
would diverge because of the large number of graphs. Moreover, even for a massive
theory defined in a finite volume A, the thermodynamic limit A — oo is not trivial
to define directly, and that is precisely what a single cluster and Mayer expansion



114

will easily do (the problem of the large number of graphs is bypassed because the
expansion automatically develops only a piece (typically small) of the interaction).
The partition function in a volume A is

Z(A) = / du(d)e0 r?" @k (IT1.1.1)
the pressure is
P(A) = %log Z(A) (T11.1.2)

the unnormalized Schwinger functions are

St A (21, ey 2 /¢> ) eb(an )dp(d)e 0 Ja #H @ (IT1.1.3)
(remember that they are distributions which should be smeared by test functions
X(z1),...,x(2n)). The normalized Schwinger functions are

1 u
SNA(z1,.. 0 2N) = msN,A(Zla ey ZN) (IIL.1.4)

_ 4
The interaction e 7 fA " could be generalized, but we should then assume that
it remains stable, that is has a small constant like g in front, and that it is local
in the sense that if we cut A in several regions A;, it factorizes as a product of

4 _ 4
functions of the field in A;: in our case this is just e 7 Joet = ILe ngi i .
The dimension d of space time has to be finite (for the volume argument
below) but is not necessarily 4 at this stage.

A) The cluster expansion

We consider a normalized gaussian measure dp whose covariance is a sym-
metric positive definite operator in z-space C(x,y) which has good decrease at
infinity. It could be for instance the covariance C° (first slice) of (IL.1.4), but in
this section we drop the superscript 0 for simplicity. We assume that its decay is
either exponential:

1C(z,y)| < O(1)e~ 1= (I11.1.5)
or power-law with a very large (adjustable) power rate r:

<0 (a—) (11116)

L+ |z —y

(We have rescaled the mass or the unit of length so that there is no scale coefficient
n (III1.1.5) or (III.1.6)). Then we divide our volume A into (hyper) cubes of side
size unity, which form a lattice D. On D we adopt for convenience an arbitrary
order: D = {Al ...} A|A|}. We adopt also the same notation A for a cube and for
its characteristic function (also called sharp characteristic functions): A(z) = 0 if
r¢ A, A(x) =1if x € A. We can write

= > Alx) (I11.1.7)

AeD
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and we might also use C§° versions of the characteristic functions A (which we call
smooth characteristic functions) so that (III.1.7) would then be a smooth parti-
tion of unity over A. In both cases the notation [, f(x) means really [, A(x)f(z).
Working within volume A means that we consider A(z)C(z,y)A(y) as our covari-
ance.

Since coupling between different cubes, which prevents factorization of (IT1.1.1)
over the cubes of D, comes solely from du, hence from the covariance C, we want
to interpolate directly in C' between an uncoupled situation and the coupled one.
But we would like the interpolated covariance to preserve the positivity of C' (as
an operator) so that it still corresponds to an interpolated gaussian measure. To
weaken off-diagonal elements (which generate the unwanted couplings) in a dis-
crete, finite dimensional positive symmetric matrix C', one could multiply these
off-diagonal elements C;; and Cj; by an interpolating parameter s;; for each pair
t,7, © # j. This point of view leads naturally to what is probably the simplest
cluster expansion, the “pair of cubes” cluster expansion of Fig.III.1.1. However
this process does not preserve positivity in general.

111 110
For instance < 122 > is positive, but ( 433 > is not! Multiplying off-diagonal

elements by parameters between 0 and 1 preserves positivity only if the diagonal
elements are quite big compared to the off-diagonal ones. Hence to be used the
pair of cubes expansion may require that we take a lattice of rather large cubes
compared to the unit scale. This in effect reinforces the diagonal piece of C' viewed
as a matrix between the cubes of D and allows preservation of positivity (see
[FMRS5]). For the moment we do not want to use the (somewhat complicated)
trick to enlarge our cubes. Then we can remark that in the particular case of a 2
by 2 matrix, positivity is preserved by damping the (single!) off-diagonal piece.

This suggests an inductive expansion in which at each step one tests the
coupling between a set of cubes and the complement. This automatically preserves
positivity and generates the tree-like expansion of Fig.III.1.2. It is this powerful
point of view that we explain now; its only drawback is that it is inductive, hence
its outcome is difficult to capture in a single formula.

For the tree expansion, we start with the first labelled cube in D, say A; = Al
(the upper index is reserved for the arbitrary order on D), and we introduce a first
parameter s; which tests the coupling between A; and the rest of D noted A; (a
bar indicates the complement in D)

C(s1,2,y) = s10(x,y) + (1 — s1)[A1(2)C(z, y) A1 (y) + As(2)C(x,y) A1 ()]

= Achl + A10A1 + S1 [AlC’Al + Achl] (11118)

The first expression is a convex combination of functions of positive type, hence is
of positive type, and proves that there is no problem to define the corresponding
gaussian measure dy, ; the second form is also useful to check that the s depen-
dence is indeed on the off-diagonal terms. We follow this interpolation by a first
order Taylor expansion. For instance for the partition function we write:

28) = [ dpy (@)

81:1



= d,umeg / dusl —gf ¢
S1= 0

= Z(A1)Z(A1) + Z Za,n, (A (IT1.1.9)
Ag#A,

with
6 ) _ f ¢4
Za,n, (A / ds /dM51 / d:r/ dy C(x,y) [ 9 Ja
' A Jas 66(x) 06(y)

(IT1.1.10)
(here it is necessary to distinguish between upper and lower indices because in
general Ay is not A2, the second cube in our list!). To check formulae (IT1.1.9)-
(IT1.1.10) we recall that at s; = 0 we can consider A;¢ and A;¢ as two independent
fields, and since the interaction factorizes, Z also factorizes. The advantage here is
that we do not need really to worry about boundary conditions like Dirichlet, Neu-

man, etc.... which were important technicalities in former formalisms. Formula
(III.1.10) follows from

%C(s T,Y) = Z Ay (2)C(z,y)A2(y) + Ao (2)C(z,y)A1(y)]  (II1.1.11)
Ap#Ay

and from integration by parts with respect to ¢ *. It creates both a propagator
between points localized in A; and A, whose decay becomes available to perform
the sum over Ay at Ay fixed in (III.1.9), and vertices hooked to this propagator,
which are created by the derivatives 54;2:):) and 5¢‘S(y) acting in (II1.1.10) on the

exponential. This is also useful because these vertices have precious factors g
attached to them.

The definition of our second interpolation depends on which term in (II1.1.9)
we look at, and that’s why this expansion is inductive. For the first term, A
is decoupled from the rest and we should start again with D now restricted to
A1, hence pick the next cube (which, this time, is A?) and test its coupling with
Ay UA?2. But for the Za, A, term we will introduce an interpolating parameter
s9 which tests the coupling of the union of Ay and Ag to Ay U Ay (remember the
former remarks about positivity). Hence in this case the interpolated propagator
is a natural iteration of (IIL.1.8). Writing A5 for Ay UAs, Ay for its complement
in D, and using A1A12 = Aq, AjAy =0, etc..., we get:

0(51, S2,, y) = 51520 + 81(1 — 82)[A120A12 + 5120512]

—I—(l - Sl)SQ[AlCAl + 51051] + (1 - 81)(1 - SQ)[AICAl + AQCAQ + 5120512]
= Achl + AZCAQ + A120A12 + Sl[Achg + AQCAl]
+$2[A20512 + Alchg] + 8182[A10A12 + AlgcAl] (111112)

and the Taylor expansion in sy gives:

ZA1A2 (A) = ZAlAz (AlQ)Z(A12)

* This functional integration by parts can be checked first for a polynomial
integrand using the explicit rules of gaussian integration for this case; it can be
extended to more general C'*° functions by a continuity argument.
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/ d81/ dsQ/dusl 52 / dﬂh/ dyl/ dﬂ?z/ dys
A1 Ao Aqo As

o o o —g [ &
- C(21,41)C (51,22, 2) {5625(332) 56(y2) 5(x1) 5¢(y1)6 I ] (IT.1.13)
If we want to have spatial integrals over unit cubes, we see that we need to
break (III.1.13) according to whether zo is in A; or in Ag, so we get a term
indexed by the set A, Ay Ag, and by the two possible trees {(A1A3), (A1A3)}
or {(A1As2), (AsA3)} corresponding to the first and the second case respectively.
We can iterate this process until the finite set D is exhausted. Clearly the factor-
ized contributions that we obtain, once they are decomposed so that each spatial
integral is over a single cube, are not only indexed by their content or support in
terms of cubes, but also by all possible tree structures that can be built on them
and generated by the expansion. After reading part I, we should not be afraid

A;éAA

anymore by trees anyway!

For summation we use a formalism of ordered sequences rather than sets
because the former allows more easily the repetition of a single element. We should
remark that in formula (II1.1.9) for the first term Z(A{)Z(A) there are no %’
so no small constant generated. In fact the partition function of a single cube
Z(Ay) = Z(A) is simply [ dpa(¢)e? IR ¢4, where dua is the normalized gaussian
measure corresponding to the covariance A(z)C(z,y)A(y), and we expect Z(A)
to be close to 1, since g is small. To have really 1 we could do a first order Taylor
expansion in g but it would complicate the picture. We prefer to compute a slightly
different partition function:

Z(A) = Z(AN)/Z(A)A (I11.1.14)

(|A| is of course the number of cubes in A, also equal to its volume since the cubes
are of unit size). This corresponds to a finite shift of the pressure p(A) by the
constant log Z(A). With this choice, isolated cubes automatically cancel against
the corresponding denominators in (ITI.1.14). The result of the cluster expansion
is then simply:
Z(A) = —A Y1) A(Y I11.1.15
(A) Yh.;}@ i (Y1) A(Yn) ( )
Y1,...,Yy disjoint

where Y7,...,Y, are polymers (called also vacuum- or (-polymers), i.e., sets of at
least 2 cubes of D (isolated cubes or “monomers” are excluded), and the amplitude
corresponding to a polymer Y = {A, Aq,..., Ay} (where A, is the first cube of
Y in the arbitrary order in D and p = |Y]) is

A(Y) :Zm/ol /Oldsl...dsp_lMT/(s)/du{s}(gzﬁ){[pljl /A dxy, /Aj dyy,

. 0 o o9 fY ¢t (x)dx
C( k,yk)—w(m 6¢(?Jk:)] } (I11.1.16)

where to be precise, the sum is over ordered rooted trees 7' with root 1, in the
sense of Section [.4. Recall that these trees are ordered sequences of links [, =
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(A4, Q) k=1,...,p—1, connecting all the cubes of Y such that if we define
Aj, = Ay we have, for any k£ > 1, A;, € {Aj,Aj,,...,A,, (see Fig.1.4.6). This
ensures that for any k£ with 1 <k < p, Y,(T") = {A, ,1 <r < k} has exactly k
distinct cubes which are connected together by the subset 7}, | = {l1,...,{x—1} of
the k — 1 first links of 7”; in particular Y,(7") =Y. As in Sect.l.4 it is convenient
to consider the ancestor function a associated to T’ such that the index a(k) < k

is the one such that A;, = A;

jacry- Lhe gaussian measure dysy corresponds to the

k—1
symmetric propagator C(si, ..., Sp—1,2,y) which is simply C(x,y) [ s; when y
=k
belongs to Aj, and x belongs to A; ,, with k' < k; it is zero when y or x are out
of Y.

At an intermediate stage of the expansion, we may define

C(s1yevvy80,0,y) = C(S1, .00, Sp1, 7, y) | Searmomsy 1=
There is therefore a polynomial s dependence of the propagators derived by the
inductive expansion; by definition this polynomial dependence has been gathered
in the factor My (s). It is easy to check that this factor is nothing but:

p—1 k—1

Mr(s) =] TI s (II1.1.17)

k=1 j=a(k)

(ITI1.1.15) expresses the partition function as the one of a gas of polymers swirling
in A, with hardcore interaction (the condition of disjointness). From the decay of
C and the smallness of g we expect this gas to be dilute, and typical polymers to
be small.

When external fields ¢(z1)---¢(zn) are present we introduce the notion of
an external polymer, which is a set Y of p cubes of D together with a subset
¢ C {z1---2zn} of external variables; it is then more precisely called a (-polymer.
Typically these external variables z; are smeared against test functions x;(z;),
and one should keep in mind that if the suppport of these smearing functions does
not overlap with the cubes of Y the corresponding amplitude of the polymer will
be zero. Remark that we do not require ( to contain all the external variables
which are localized in Y (i.e. have smearing functions with support in the cubes
of '), a fact which will be convenient later.

Again we forbid the trivial case of a single isolated empty cube p =1, ¢ = (),
but p = 1 and ¢ # 0 is allowed. Then the truncated unnormalized Schwinger
functions 6”/}%,;(21, Cey EN) = Z(A)_|A|S}(,7A(zl, ...,2n) are also expressed by the
cluster expansion as a gas of polymers with hardcore interaction:

Sha(Z1 o) = 3 Lawy-Aaw,)  (mwLs)

|
Yi,...,Y,CD T
Y1,...,Yy disjoint linear in{z}

where the condition of “linearity in the external variables” means by definition that
for each z;, 1 < i < N there is exactly one polymer Y}, j € [1,..., ¢] which contains

it. The amplitude A(Y) is exactly similar to (IIL.1.16) but with e 7 J; otz
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4
replaced by | [] [ x;(zj)dzjd(zj)e™? Jy #* @z if Y is a (-polymer. The next
Z; EC
step in the analysis is to perform a Mayer expansion that will take care of the
hardcore interaction in (II1.1.15) or (IIL.1.18). Anticipating on what follows, let
us state that this expansion has been shown to converge, for such a polymer gas,

provided the amplitudes satisfy the bound [Bry]:

> 1AM <1 (111.1.19)
Y30

The condition Y € 0 is there to break translation invariance, and if (IT1.1.19) holds
uniformly in A, it has to hold in an infinite volume as well. Before continuing with
the Mayer expansion we will show why we can achieve estimates even quite stronger
than (IT1.1.19), using the smallness of the coupling constant, and the fast decay of
the propagators. Hence let us prove:

Theorem II1.1.1: The polymer bound
Let K be any fixed constant. For g small enough we have:

> AW KM <1 (111.1.20)
Y30

where the sum in (I11.1.20) is over all finite polymers in an infinite volume (because
the estimate (II1.1.20) in finite volume A is independent of the volume of A).

We explain in detail the proof, restricting for simplicity to vacuum polymers
*. A crucial first step is to go from ordered trees to regular, unordered trees. Let
us call T(T") the regular (unordered) tree associated to 77. Battle and Federbush
realized that at fixed T there is nothing in (III.1.16) allowing to sum over the
various orderings of the trees T with T(T") = T, except the s dependence in
(ITI.1.17). The following lemma is inspired by their work [BaF1]:

Lemma III.1.1 For any (regular, unordered) tree T' we have, summarizing all the
s integrals in (II1.1.16) by the notation [ ds:

> /MTf(s)ds =1 (IT1.1.21)

T, T(T")=T

This lemma is often stated as the fact that } 7 ppny_q My (s)ds is a probability
measure dpr(s) [Bry].

Proof  Let us introduce a parameter ¢; ; for each pair of cubes A;, A; in Y.
We can apply the inductive analysis above to the function F(¢) = H(i’j)(l +€.5)-
More explicitly starting from the root iy = 1 we introduce a first interpolating
parameter:

€i,j(51) = € j[s1+ (1 —51)[01,:615 + (1 — 61,5)(1 — 61,5)]] (IT1.1.22)

* For polymers with external variables the proof is similar except the position
of the external variables can be used to break translation invariance, hence there
is no need to include a condition like Y 3 0 in (II1.1.20).
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and perform a first order Taylor expansion F(1) )+ f dsl, and so forth.

The polynomial s dependence generated by this process is again My (s) for an
ordered tree T'; but by comparing powers of ¢; ; we can now compute that the left

hand side of (III.1.21) is exactly the coefficient of [] ¢ ; in F', hence is 1.
(4,9)€T
Remember that isolated cubes are excluded, so if Y = {Ay,...,A,} p > 1,

we compute now the action of the [] (%W) in (II1.1.16). This action is

a bit complicated to write down, but remember that % ¢(5yk) acts in Aj, , which is
Yi(T") — Yie—1(T") with previous notation; hence it has to derive a vertex from the
exponential by the formula

e Y f ¢* _4 3 e Y f ¢!

go”( I11.1.23
Zoh (12
This remark ensures that in the bound for A(Y") we can extract a factor at least g7,
and since ¢ is as small as we want we have a “small factor per cube”; in particular
this remark takes care of the large constant K in Theorem III.1.1. More precisely
we claim that:

Lemma III.1.2 For a propagator decaying like (ITI.1.6) there exists some large
constant K’ = const.K such that

(3r/4) p

o < &0 S ] | rmr sy Lles™ s

=1

where d; is the coordination number of the (regular, unordered) tree T' at cube A;,
i.e., the number of propagators of the tree T" which hook to a vertex within A;.

1 (3r/4)

In the case of exponential decay (II1.1.5), simply replace [] [m
k 'k k

—(3/4) Z dist(Aq, ,A;,)
by e
Indeed after performmg the 5 functional derivatives we obtain a sum over

procedures P of functional 1ntegrals of the type [ [] ¢;e f du{ 1+(9); the prod-
J

3
uct [] ¢; is a short notation for a product []cy H [ dzdF(z)]™ of integrals

over A of products of one up to three fields which were produced by the 6 3 func-
tional derivatives. We commute the spatial integrals dx and the functional integral
dp and evaluate the latter by a Schwarz inequality:

1/2

/H% dﬂ{ y = /H¢ (dpgsy (0 [/ e/, ¢4du{s}(¢)

1/2 1/2

/Hﬁf’?dﬂ{s}(aﬁ) < /Hcé?du(cb) (IT1.1.25)

The last inequality is true because both sides can be computed with Wick’s theo-
rem, and C'(s, z,y) is bounded pointwise by C(x,y). This is because it is a convex

1/2
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combination of covariances pointwise bounded by C (see (II1.1.8) and (II1.1.12)),
and these covariances are pointwise positive by (1.3 ). Remark that it is a nice
coincidence that C' is both pointwise positive and of positive type; in general it is
not true that a convex combination like (III1.1.8) is bounded in the operator sense
by C.

The measure du has both ultra violet and infra red cutoff and the number
q; of fields ¢; localized in a cube A; has to be linear in d;, in fact bounded by
3d; (each derivation step produces at most in fact 3 new fields). There is no
longer permutation or symmetry factor between the vertices created in A;. At an
intermediate stage, after j steps (1 < j < d;) of the cluster expansion, the number
of fields in A; is ¢;; < ¢q;. At step j + 1 a new propagator which hooks to A;
can hook to a field already produced, or it can derive a new vertex. In the first
case we have to pay a factor ¢; ; < ¢;, but ¢; j4+1 = ¢; ;; in the second case there
is only a factor 1 (coupling constants g have been already taken into account),
but ¢; j+1 = ¢i,; + 3. In the end the gaussian functional integral (III.1.25), by an

analogue of the local factorial principle (Lemma I1.6.2), gives a factor [(g;!)3/2.

To use Lemma I1.6.2 we need a (summable) piece of the spatial decay of the
propagator, e.g. one fourth of the initial decay (II1.1.6), which explains the factor
3r/4 in (IT1.1.24).

Summing over all possibilities for the functional derivations called also

s

%7
procedures P, the final bound is therefore similar to the worst scenario where
each propagator derives a new vertex, hence is (const)™ - [[(d;!)?/?. Using Lemma

III.1.1 (since the s dependence is now factorized) we canzperform the s integrals
and change the sum over T” into a sum over regular trees 7. This completes the
proof of (IT1.1.24) (the term (Z(A))™P is absorbed in the constant ¢ of (I11.1.24)).

Constant powers of factorials like (d;!)3/? can be beaten by the decrease of the
propagators (in fact with only a piece, say half of it) because of a volume effect:
it relies on the fact that the d; cubes hooked to A; by the tree T" have to be all
distinct, hence when d; gets large, since we are in a finite dimensional space, many
of these cubes have to be quite far from A;.

Lemma II1.1.3 For any constant ¢, taking r large enough (depending on ¢) we

have
p—1 1 r/4 n
d;')° <1 I11.1.26
I i) Heors (11.1.26)

Proof By the volume argument at least half of the d; distinct cubes hooked to
A; have to be at distance at least (a - d;)"/?, where a is a numerical constant and

r/4
d is the space time dimension. From the corresponding [] ( ) we

1
1+diSt(Aik ’Ajk)

can therefore extract a factor

rd;

11 (1 fadi) N (ITL.1.27)

i

(the factor 16 is because we take only half of the d; cubes into account, and
a propagator hooks to two cubes). Obviously for r large enough this leads to
(TT1.1.26).
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Theorem III.1.1 follows then easily from one further lemma:

Lemma III.1.4 For ' > d, there exists a constant K’ such that:

n 1 T‘,
A= > > T[a'] [1+dist(A A <K' . (111.1.28)

Y30 T i=1 k heo
|Y|=p

Proof We can interchange the sum over Y and 7. By translation invariance we
can require the root of the tree to be the cube containing the origin. Knowing the
structure of 7" we can sum over the positions of the cubes of Y, using the decay
in (II1.1.28); this would even be true with any summable decay in (II1.1.28) (not
necessarily power-law with a large power). The result is bounded by ¢Pp! because
the set Y gets counted p! times in the independent summation over its elements.
Using Cayley’s theorem (section 1.4), we can perform the sum over trees 7' with
given coordination numbers and get:

A< > & < K'P (111.1.29)
{di,dp},di>1,y " di=2p—2

with K" = 4¢;.

Combining Lemmas I11.1.1-4 we have finally to sum in Theorem IIL.1.1 a
series bounded by the geometric series ), (¢/K K'g)?, and taking g small enough
achieves the proof of (II1.1.20).

Remark that a sloppier version of Lemma ITI.1.4 without factors d;! in (I11.1.28)
(and without Cayley’s theorem) would have suffice at this stage. Lemma II1.1.3 in
fact takes care of any factorials of the coordination numbers when a large decay
is available. However it is a legitimate question to ask whether Theorem III.1.1
remains true under weaker assumptions than (II1.1.5-6). The typical rule of thumb
is that a cluster expansion usually does not require more than a summable propa-
gator in x—space. In particular let us sketch the proof of a more powerful theorem:

Theorem II1.1.2: Generalization of Theorem III.1.1
Theorem III.1.1 also holds under the assumption (III.1.6) provided only that » > d
(summable decay).

With such a limited decay, we have no analogue of Lemma III.1.3, and we
must be careful not to consume any decay in Lemma III.1.2, since all the decay
of the propagator should be kept for the equivalent of Lemma II1.1.4. Comparing
Lemmas III.1.2 and III.1.4 it seems that we are going to loose the game anyway
because there is a power 3/2 instead of 1 for the local factorials. But there is one
point on which we can improve: the Schwartz inequality (II1.1.25) is not optimal.
We can instead use a Holder inequality, which we state only in the “worst case”:

1/4

3 4 3/4 4
/Aqb(:c) dxC(x,y) < [/AQS (z)dz] [/A dzC(z,y)"] (IT1.1.30)

The ¢ vertices in A are transformed in this way. The integrated propagators
[y dzC(z,y)*]*/* can be used to sum over A just as well as C(z,y) if (IIL1.6)
holds with r» > d. Hence Lemma III.1.4 remains true. But we can now use the
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fact that x"e™" < n! to improve our factorials: in the worst case there are d;
vertices to which (II1.1.3) is applied in A;. They are bounded using the inequality

4

g/t . [fAi g¢4]3di/4e_g fAi ¢ < ¢ - g%/*(d;")?/*, and (in contrast with Lemma
I11.1.2) this does not consume any fraction of the propagator’s decay, because
this bound is completely local (works separately in each cube A;). Comparing to
Lemma III.1.4 we win now the game provided g is taken still smaller than before.
We leave to the reader to fill in the details, in particular to check that the sum over
all possibilities is of the same order than the “worst case” considered. The idea of
using the interaction to improve over gaussian integration is the first example we
meet of “domination”, a technique to be discussed at length in the next chapter,
hence we do not develop it here in full detail.

Before going on to the Mayer expansion, let us apply the cluster expansion
formalism to the proof of Lemma I1.6.3, which we postponed until now.

Proof of Lemma I1.6.3 We apply the cluster expansion no longer to e 7 fY #*
but to (1/n!)(f; ¢*)". The number of occupied cubes (vertex domain in the
language of section I1.6) is still p. We repeat exactly the same analysis, including
the analogue of the Schwarz inequality (III.1.25) to separate the fields hooked to
propagators derived by the % operators from the remainder, which is necessarily
of the form (1/¢!)( [y ¢*)? for some ¢ with 0 < ¢ < n—p. The fields of the first kind
are localized in particular cubes of Y and again their Wick contractions give only
factorials of the coordination number, which are bounded like in Lemma III.1.3.
Hence the only difference is in the second factor of the first line of (II1.1.25), which
is no longer bounded by 1, but by K%¢!. This, together with the obvious inequality
q! < Z—; for ¢ < n — p achieves the proof of Lemma II1.6.3.

B) The Mayer expansion

The Mayer expansion starts with formulas (II1.1.15) or (III.1.18). and allows
us to compute the correct quantity for a thermodynamical limit, namely normal-
ized Schwinger functions or the pressure. Let us call a finite ordered sequence
of polymers such as Yi,...,Y, a configuration M, of length ¢ (the terminology
“Mayer graph” in [FMRS4] is not very appropriate). When there are external
variables in Y7, ..., Y;, the union of which is {2} = {z1,..., 25} we call M a {z}-
configuration. We introduce also the set P(M) of all pairs (i,7),1 <i < j <gq.
We say that the configuration is disjoint if Y; N'Y; = 0 for every (i,j) € P(M).
Conversely it is called connected if for every (i,j7) € P(M) we can find a chain
(Y;d =Y, Y;2)(Y;2Y;3) T (Y;k—17
uration which join Y; to Yj, i.e. which are such that ¥;, N'Y;

Yi, = Yj;) of overlapping polymers in the config-
# (. Defining

q
the amplitude of the configuration as A(M) = % [T A(Y;) and defining the two
=1

{+1

body hardcore interaction V(Y,Y”) as 0 if Y and Y are disjoint and +oo if they
overlap, we can rewrite (II1.1.15) or (IIL.1.18) as

Z(A) = > A(M)

disjoint @ —configurations M

- > AM)y [ e VO (I11.1.31)

0—configurations M (i,7)EP(M)
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St (21, 2n) = > A(M)

disjoint {z}—configurations M

= > AM) T eV (IIL.1.32)
{z}—configurations M 1,jEP (M)
(IT1.1.31) is the grand canonical partition function of a gas of polymers with hard-
core interaction: an ideal gas of polymers would have no such interaction. The
Mayer expansion is an expansion for the logarithm of (IT11.1.31) around the ideal gas
situation. In our case it consists simply in writing e~V (YY5) = (e=V VoY) 1) 41.
The 41 term corresponds to the free “ideal gas” where the two polymers Y; and
Y; are summed independently (this intuitively restores for Y; the “translation in-
variance” which was broken by the forbidden region Y;); and the (e~ (:¥i) — 1)
which is —1 if ¥; and Y} overlap and 0 otherwise is called a “Mayer link” be-
tween polymers; it plays indeed the role of a connection somewhat similar to the
propagators which link two cubes between a given polymer.
Just as for the cluster expansion we could write a systematic expansion of the
“pair of cubes” type, namely write

[[ V0= 3" ] (V) 1) (I11.1.33)

i,j€P (M) JCP(M) (i,5)€]
1<j

The result is then factorized over maximal subsequences of M which are connected

by the bonds of J. Such subsequences can be considered again as configurations
which have to be connected. Their connected amplitude is simply:

AT(M)=T(M)-A(M) with T(M)= Y [ (V¥ -1) (1IL1.34)
JEIT (M) (irj)€T

where JT (M) is the set of all subsets of P(M) connecting M into a single compo-
nent. Using simple multinomial identities we obtain that

- 1
Z(A) =) . > AT (M) (I11.1.35)
n=0 " | @—configurations M
so that
_ 1 ~ 1
p(A) = Tl log Z(A) = Tl > AT (M) (I11.1.36)

(—configurations M

The 1/n! in (III.1.35) comes from the number of partitions of the ¢ elements of the
sequence Y7, ..., Y, into n subsequences. In (III.1.34) or (II1.1.36) only connected
configurations contribute, otherwise AT (M) = 0. Convergence of (IT1.1.36) is not
easy to prove in this direct “brute force” expansion because naive estimates which
do not take into account the signs cancellations in the factor (II1.1.36) fail. (see e.g.
[Se]). Again the “pair of cubes” is not the minimal process to reach factorization.
This minimal process is rather of the tree type, and we explain it now. Starting

from a configuration Y7,...,Y,, it is better to first expand [] e~ V(1.5 in the
Jj>1
left hand side of (III.1.33) as:

[[evo =1+ (e—V(Yth) _ 1) [] eV oy . (TI1.1.37)

g>1 Ji#l k>ja
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As is the rule with a tree expansion the next step depends on which term is
selected in the sum (II1.1.37). The term 1 frees Y7 from every hardcore interaction
with other polymers, in which case we can directly replace Y; by Y5 and apply

an analogue of (I11.1.37) to [] e~V (¥>Y3). But for a term corresponding to j; in
j>2

the sum (II1.1.37), Y} and Y}, are linked through a “Mayer link”. The next step

is to expand all the remaining constraints relative to Y7 and Yj,, to test whether

Y7 UYj, is free from hardcore interaction with the rest of the configuration or not.

This is done with priority to Y7, i.e. we write

T eV [ eV =

k>j1 1<k’
k' #51

1+ Z (e=V(1Y5) 1) H o=V (Y1,Y2) H oV (Y, Vi)

J2>71 k>j2 1<k’
k' #j1
+ Z (e—V(Yj17Yj2)_1) H e_V(YJ'UYk’) (111138)
J2#1,1 j2 <K'
k' #j1

The first term frees Y; and Y, from the rest, the second term corresponds to
the tree {(Y71,Y;,), (Y1,Y},)}, the third one to the tree {(Y1,Y},), (Y;,,Y},)}. We
can continue this process until all polymers are exhausted, but there are several
different possible strategies, among which the stategy “push each branch as far as
possible” (also called “turn around the tree”) and the strategy “let the tree grow
layer by layer”. The second one is perhaps more natural, so let us adopt it. It
means that we develop in priority all the constraints of Y; with other polymers,
until the process stops by the choice of a factor 1. Then we have built a “first
layer” of polymers Yj ,...,Y}, linked to Y7 by Mayer links, with j; < j2 < ... < jg.
We expand then in priority the constraints of Y; with all polymers other than
Y, Y;,,....Y),, constructing the piece of the “second layer” of the tree linked to
Y; . Then we expand in priority the hardcore constraints of Y;, with all other
remaining polymers, constructing a second piece of the second layer, and continue
in this way until all the second layer has been built. Then in this second layer we
select the polymer with lowest index in the initial ordering, and expand in priority
its constraint with the remaining ones, and continue until all the third layer is
built, and so on.

In this way each time the process stops by selecting a term 1 in the sums
similar to (II1.1.38) for all the polymers of the last layer, we have factorized a
particular subsequence. When all polymers are exhausted we end up with inde-
pendent sums over factorized subsequences connected by Mayer links just as in
(III1.1.35). Therefore the two expansions must be identical in the sense that they
express finally Z(A) or p(A) by the same series of the same connected amplitudes
AT (M) for configurations M; the advantage of the second point of view lies in
the fact that it gives an explicit rewriting of the factor T(M) as a sum of fac-
tors which have absolute values less than 1. More precisely if we study with care
(IT1.1.38) and its generalizations we conclude that it generates exactly once each
tree built on the configuration; it does not generate ordered trees as the former
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cluster expansion because at a given layer the constraints are always developed in
the order provided by the initial ordering Y7,...,Y; of the configuration; we see for
instance that the tree {(Y3,Y},), (Y1,Y},)} is generated once, not twice, because
of the condition jo > j; in (II1.1.38). Obviously the total factor associated to a
particular tree is in absolute value bounded by 1; this was not the case for T'(M)
in (II1.1.34). However the precise description of this factor is a bit cumbersome.
It is the product over all pairs of polymers of the tree of:
— a Mayer link eV — 1 if the polymers are joined by a line of the tree,
— a hardcore constraint e~V if the polymers Y; and Y; belong to the same layer
of the tree or if they belong to adjacent layers, e.g. respectively layer k£ and
k + 1, and the ancestor Yj’ at level k to which Yj is hooked has index smaller
than Yj,
— a factor 1 otherwise
We conclude that the process we describe ((II1.1.37-38) and its generalization)
is an algebraic way of reorganizing the sum over JT (M) (II1.1.34) as a sum over
trees, by grouping together many connecting subsets .J having a particular tree in
common, according to a particular rule. The details of the rule (“layer by layer”)
are partly arbitrary. The gain lies in the fact that although many .J's are grouped
together, the corresponding large sum of factors [J(e™" — 1) is still bounded by
1, so we have effectively taken into account the sign cancellations in (III1.1.34).
Having clarified this point, we proceed with the evaluation of the series
(IT1.1.36). We have to bound

= S f[ A(Y)) (I11.1.39)

Yi,....Y, " T connecting the Y's j=1

We can use Cayley’s theorem (Sect.l.4) on the number of tree graphs with fixed
incidence numbers dy,...,d,: this gives

\;«)\: Zd >

di,ondy,  T,{d;}Mixed

—2)!
) q(qi) sup  [(-)] (TI1.1.40)
dy,...,dqg H (dz — 1)! (T,d) fixed
j=1

IN

Taking into account the % in (II1.1.39), it remains, for a fixed tree connecting

—1
the Y;’s, to sum over the Y;’s, not forgetting the important [lg[ (d; — 1)!} from
(IT1.1.40). We sum over the Y;’s starting from the end branchés 1of the tree (again,
Y} being the last polymer to be summed, or the “root” of the tree). If Y, is such
an end branch, let A, be a cube in the non empty intersection Y; N'Y, of Y, with
its immediate ancestor Y; in the tree (remember that Y; and Y, have to overlap
since they are joined by a tree branch, which corresponds to a “Mayer link”). We

sum over Y,, holding A, fixed. This produces, by translation invariance, a factor

DA =) Ayt (I11.1.41)

Y >0 Y >0
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since d; = 1. Now we can sum over A, in Yj, obtaining a factor |Y;|. Iterating this
process, we can perform inductively the sums over Y's, progressively stripping off
the branches of the tree. A sum over a given Y; gives rise to a factor

> AW [yt (111.1.42)
Y >0

where |Y'|%~! arises because at the time Y; is summed there has been d; — 1 other
polymers already summed which had Y; as their ancestor in the tree. We take into

d;—1
Y

account the crucial factors ﬁ by writing > |(Yd-|T)! . Finally in the last

sum over Y7, the last reference cube A; can be anywhere in A, hence we get the
estimate:

> [AT(M) | <Al

(—configurations M q

> |A(Y)|e|Y|] (111.1.43)

Y30

hence using Theorem IT1.1.1 we conclude that for g small enough the series (IT1.1.36)
for the pressure are absolutely convergent.

We can extend easily this analysis to the normalized Schwinger functions. The
main difficulty is that the external variables must then be part of the definition
of the polymer, so that strictly speaking the polymer is now a set of cubes (its
support) plus a set of external variables, (the corresponding amplitude being zero
if the support of the smearing functions for the external variables does not inter-
sect the support of the polymer). One difference is that in the cluster expansion
generating the polymers some integrations by parts may “hook” to the external
fields instead of deriving a vertex by formula (II1.1.23); this is no problem for
convergence if the number of external variables is bounded, as is the case here. An
other subtlety is that one should take into account the fact that polymers which
contain external variables are indexed by them, so the corresponding sums have
no longer to be symmetrized by % factors as for vacuum polymers. Therefore:

Stalen k= Y 1 > AT (M)

w=(w1,...wm ) =1 M w;—configuration
n

=1
3 - > AT (M) (IT1.1.44)
n=0 M D—configuration

where the sum is taken over partition w of all external variables into m subsets
Wi, - - -, wWm. In (II1.1.44) we recognize that Z(A) is factorized, so that the normal-
ized functions are given by:

SAn(z1 - an) = Y ﬁ > AT(M) (T11.1.45)

w={w1,..c,wm } =1 M w;—configuration

and the normalized truncated Schwinger functions are given by the simpler expan-
sion:
San(z1,---,2n) = > AT (M) (IT1.1.46)

M {z1,...,zn }—configuration
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The series (II1.1.45) and (II1.1.46) are shown to be absolutely convergent exactly
as the one for the pressure, except that now the external variables (which for
simplicity are localized by the smearing test functions within given cubes of A)
break translation invariance and can be used to hook the last summation over Y7:
for the pressure this last summation was free, hence the dividing factor |T1| had to
be included.

Remark that if we are interested only into the normalized (not truncated)
Schwinger functions, we may expand only the hardcore constraints between pairs
of polymers for which at least one is a vacuum polymer, keeping the constraints
between polymers with external variables unexpanded. This will be enough to
factorize Z(A) as in (I11.1.44). We may also derive intermediate versions, in which
e. g. the constraints involving at least one vacuum, two or four point polymer are
expanded, but not the other. This results in partly truncated amplitudes, which
are useful when renormalization of two and four point functions is involved (recall
that in part II we learnt that renormalization is best expressed at the level of
connected functions). It is a version of this kind which will be used in the next
chapters.

The convergence of these various expansions does not lead to any particular
problem when the number of external fields is fixed. However in the context of the
phase space expansion which we are going to introduce, low momentum fields at a
given scale must be considered as external variables. Therefore the number of such
variables is no longer bounded at intermediate stages, even if we compute a fixed
N-point Schwinger function. This leads to a subtlety: if we were to expand fully all
hardcore constraints involving not only vacuum polymers but also polymers with
e.g. two and four external legs, we would generate Mayer configurations in which
an arbitrarily large number of external low momentum fields may accumulate at
the same place. From the “local factorial principle” we know that this would lead
typically to divergent expressions. Therefore the Mayer expansions we use in phase
space are slightly modified to avoid this effect: they keep the cubes containing the
external legs of a two or four point function (called their external cubes) fixed
and non overlapping. In this way the truncation is almost completely performed,
and the renormalization cancellations can be performed, but a large number of
low momentum fields still cannot accumulate at the same place. This process is
described in Section II1.3D. Remark that this problem is truly a constructive one,
which has no analogue in perturbation theory.

Altogether, we have achieved the proof of:

Theorem 1II1.1.3 Convergence of the Mayer expansion
For g small enough, the series (III.1.36) and (III.1.45)—(II1.1.46) are absolutely
convergent, uniformly in A. As A — oo their limit is therefore still absolutely
convergent and can be used to define rigorously the massive weak coupling ¢*
theory (with ultra violet cutoff) in any dimension.

Let us gather now some further remarks on various aspects of these expan-
sions.

C) Further topics

Our first coment is on the similarities and differences between the cluster and
Mayer expansions. In both cases trees emerge as the central structure around
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which the expansion is best organized. But for the Mayer expansion there is no
positivity requirements to preserve, and the algebraic process (I11.1.38) directly
generates trees. Ordinary perturbation theory which is nothing but a gas of ver-
tices interacting through propagators, shares these features; there is no positivity
requirements, and it is possible to design an “algebraic” or “set-theoretic” cluster
expansion based on selecting particular propagators, as sketched in section II.6.
But when functional integrals are involved, positivity requirements occur and in-
terpolating parameters seem necessary. The corresponding cluster expansion gen-
erate ordered trees rather than trees; however by the Battle-Federbush theorem,
the summation from ordered to ordinary trees is controlled by the integration over
these interpolating parameters.

An other difference is that in the cluster expansion for the functional integral,
strong decay of the propagator and the volume argument allows sloppy estimates
on the factorials of coordination numbers of the tree. This is no longer true in the
Mayer expansion where one has to use with care the single factorial of this type
delivered by Cayley’s Theorem. To get some intuition of this, we may compare the
polymers of the cluster expansion to fermions because their hardcore interaction
is somewhat reminiscent of the Pauli principle. In contrast, the “Mayer config-
uration”, made of ordinary polymers with Mayer links, have no longer hardcore
interactions; they behave like bosons which can pile up in arbitrary numbers at a
given place. Hence we may compare our remark with the known fact that perturba-
tion theory for fermions is more convergent than for bosons, and that keeping track
of correct factorial factors for fermions is less important [FMRS4][IM2,Appendix].

Our last comment is on the difference between cluster expansions a la Brydges-
Battle-Federbush, used here, and a la Glimm-Jaffe-Spencer as in [GJS]. In section
I1.6 we wrote the propagator as a Wiener sum over random paths. The difference
is summarized by the statement that GJS cluster expansion localizes both ver-
tices and the paths building the propagators, when BBF cluster expansion only
localizes the vertices, hence is simpler. However to compute the BBF expansion
it is necessary to perform explicitly functional derivatives like (II1.1.23). For a

polynomial interaction like e_f ¢! this is no problem, but in more complicated
situations, it might be difficult or impossible; in such cases one may have to return
to GJS cluster expansions (see [Bry] for an example with “large fields holes” where
the interaction is non polynomial).

The cluster and Mayer expansions explained above are sufficient for the pur-
pose of proving existence of the thermodynamic limit. They provide information
equivalent to connectivity at the graphical level. But sometimes we are interested
in more detailed information about the system, in which case one can push fur-
ther these expansions. A first extension in order to reach information equivalent
to graphical one-particle irreducbility was developed in [FMRS4-5] in order to per-
form full (rather than useful) mass renormalization of the models considered there.
This point of view has been made more systematic in [IM1-2] for the purpose of
multiparticle structure analysis, under the name of p-th order expansions. (Of
course the story of the subject is a long one, with some landmarks like [Sp2] or
[CFR]). We underline here the basic ideas of the construction, refering the reader
to the very clear sections 3 and 4 of [IM1] for a detailed exposition.

The first idea for p-th order cluster expansions is that nothing (at the level



130

of convergence) prevents us to push the Taylor expansions in the interpolating s
parameters further than to first order. The price to pay however is that the new
structures obtained are no longer indexed by ordered trees but by more general
“graphs and procedures”. More precisely if we return to interpolation (III1.1.8),
we start as before with a first order Taylor expansion similar to (I11.1.9):

1
Z(A)=Z(s1=0) ‘|‘/ dsy Z ZA, A, (51) (IT1.1.47)
0 A1 #A

In the term Z(s; = 0), du decouples Ay from its complement A — Ay, and as before
we turn our attention to the next cube of A — A; and repeat the process. But
for the remainder term remark that we call A; ; the cube (previously called Ay)
linked by a propagator to A;. Since the guiding idea is that a single propagator
is not (p-1)-particle irreducible for p;l, we are not satisfied and want to push
further the expansion, trying to know whether A; ; is linked to Ay through more
propagators. It is not enough to simply push the Taylor expansion in s; up to
order p, because the cubes linked to Ay by each sy derivation may be all different.
(This defect would not occur if the cluster was of the pair of cubes type, but we
know that this one has a positivity problem). Hence the correct procedure is again
very inductive. We introduce a second Taylor formula (hence a new parameter s
interpolating between 0 and s1), writing:

ZAl,Al,l(sl)zZAl,AM(O)Jr/ ds) Y Za,a,,a0.(s1) (IIL.1.48)
0 App#A;

In the remainder term A; is linked by a propagator both to A; ; and A », which

of course may coincide. For this remainder term the procedure is pursued until
(r)
1

Two typical outcomes of the process are pictured in Fig.II1.1.3 (for p=4), one in

either one variable s;’ is taken at 0, or p squares among Ay 1,..., Ay, coincide.
which at most p-1 squares among Aj 1,..., Ay, coincide and A; is decoupled in
the measure dp from A — Ay, and the other in which A, = Ay coincides with p-1
previous squares among Aj 1,..., A ,_1. In the first case we choose a new square
Ao in A — Ay and continue the expansion, with an important caveat: the new
expansion in so, sé,...,sérﬂ is no longer pushed until some s, parameter is set to
0 or p squares linked to Ay coincide, but until some s; parameter is set to 0 or
Ay is linked in a (p-1)-particle irreducible way to some set of other cubes. This
can arrive earlier than for Ay, because the propagators already created in the first
expansion in Si,..., sY:Tl) may help, as shown in Fig.III.1.4a, which is a possible
continuation of the process shown in Fig.ITI.1.3a.

In the second case (Fig.III.1.3b) we should consider A; and A as linked in
the same (p-1)-particle irreducible object and they are treated as a single block in
the rest of the expansion, just as were A; and A, in the ordinary cluster expansion.
This means that we introduce an interpolating parameter so by formula (IT1.1.12).
We make first order Taylor expansions in so, 5’2,...,5%7"2 until either one of these
parameters is set to 0 or some square Ag is linked in a (p-1)-particle irreducible
way to the block A; U Ay, as in Fig.III.1.4b.

This process is continued and larger and large (p-1)-particle irreducible blocks

are formed, until the process ends up, an issue guaranteed by the finiteness of A.
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The result is an expansion in terms of sets of disjoint cubes Y7,...,Y; or polymers
(again it is better to factorize the functional integral for an empty cube, passing
to Z as in (IIL.1.14)). For each polymer there is a sum over graphs G made of
lines connecting these cubes. These graphs are no longer trees, but there are some
restrictions on these graphs, because they never connect subsets of cubes in a p-
particle irreducible way. Finally there is also a sum over procedures P leading
to these graphs, which is a generalization of the sum over orderings of the trees
in the ordinary cluster expansion. The sum over procedures leading to the same
graph is again controlled by the integration over interpolation parameters, using
a generalization of the Battle-Federbush result [IM1, Lemma 1]. The sum over
graphs built on the support of a polymer may also seem more difficult than the
sum over trees, but the condition that there is no p-particle irreducible structures
is in fact very restrictive, so that Theorem III.1.1 remains valid. Therefore p-
th order cluster expansion followed by an ordinary Mayer expansion can be used
for the computation of thermodynamic limits and normalized quantities. But of
course their real interest lies in the fact that in these expansions the k-particle
analysis becomes possible. For instance an expansion with p=3 makes explicitly
visible all the chains of one-particle irreducible two-point subgraphs in a polymer
(this is not the case for p=2, see Fig.III.1.5).

This opens the possibility of performing full non-pertubative mass renormal-
ization in ¢j-like models, i.e. to set the renormalized mass of the theory directly
at the desired value. Indeed in this renormalization, the one particle irreducible
two point functions must be subtracted at 0 external momenta. For the same
reason than in perturbation theory, the “useless” part of mass renormalization
is not the source of any non-summable effect of the renormalon type. However
just as renormalization of the 4 point function requires at least the computa-
tion of connected four point structures, hence an ordinary Mayer expansion, the
renormalization of such one particle irreducible subgraphs requires a generalized
version of the Mayer expansion. Indeed to remover hardcore constraints between
connected polymers would not be enough, because inside a connected graph a one
particle irreducible two point subgraph has still hardcore constraints with the rest
of the graph (hence its 0-momentum value is not “background independent”, but
depends on the rest of the expansion, so that it cannot cancel exactly with a uni-
versal, background-independent counterterm). The necessary generalized Mayer
expansion removes not only the hardcore constraints between connected polymers,
but aslo the hardcore constraints of each one particle irreducible 2-point subgraph
inside each connected polymer with the rest of the polymer, by algebraic formulas
similar to (II1.1.37-38). Here again, to display convergence one has to be careful
and to proceed in an inductive way, in the natural order provided by the maximal
chains of such one particle irreducible subgraphs [FMRS5]. Although appealing
at the conceptual level, this method leads to some rather intricate technicalities,
so we decide in section II1.3 not to use it and to perform a more standard “fixed

” computation of the renormalized mass.

poin

One can continue along these lines and define still more general “Mayer expan-
sions”. For instance Iagolnitzer and Magnen have considered, in the analysis of the
Bethe-Salpeter equation, the removal of hardcore constraints between two-particle

irreducible kernels along the chain pictured in Fig.III.1.6 [IM4]. Here again the
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linear character of the chain is used to organize the expansion. To our knowledge
a completely general theory of such expansions remains to write.

As shown in [IM1-4], p-th order expansions can be used for a better under-
standing of multiparticle structure and may be of help for a proof of asymptotic
completeness which is of course one of the most important open mathematical
problems in field theory. For a review on this subject we refer to [Ia].

D) The ¢3 theory

A single slice model like the one considered above may seem somewhat arti-
ficial. We could without difficulty remove the ultraviolet cutoff for the ¢{ theory
(the anharmonic oscillator) and apply the previous formalism to construct its weak
coupling infinite volume limit. This is still not very exciting. Hence we prefer to
conclude this section by a more interesting exercise which gives a first flavor of
the ultraviolet problem in constructive field theory. The construction of the P(¢)s
model by Nelson, Glimm-Jaffe and Guerra-Rosen-Simon [Erl] was the birth act
of constructive theory, hence no book on this subject should omit it. Here we will
limit ourselves to rephrase Nelson’s probabilistic argument in our language. Using
the powerful method of part II for graphical estimates, it is almost immediate
to prove the existence of the ultraviolet limit of the theory in a unit cube. The
only divergent graphs in the ¢3 theory are due to loops i z% made of a single
line, also called tadpoles. The Wick ordering, or normal ordering of a polyno-
mial with respect to a gaussian measure is precisely the mathematical operation
which removes such possibilities, so that the perturbative expansion of Wick or-
dered quantities does not contain any tadpoles [Si]. Introducing our favorite cutoff
(IL.1.2-4) for the gaussian measure du, we expect convergence as p — oo of the
: ¢* : theory in two dimensions. Let us prove convergence of the normalization:

Z,= / dpy(@)e 9 s ?" (IIL1.49)

A is a unit square in IR?; the boundary conditions are not very important. The
problem is that : ¢* : is no longer positive. A simple computation gives:

ot = ot —c o pp? +d - p? (IT1.1.50)

where ¢ and d are two numerical constants. c$? corresponds to the mass renormal-
ization (of the tadpole graph) and d to the vacuum energy renormalization (the
graph with a single vertex and two tadpoles); p is up to a constant the logarithm
of the cutoff, since the tadpole diverges logarithmically.

The naive lower bound on (I11.1.50) is —K - g - p? for some constant K, and
the naive bound on Z, therefore explodes as el 'p2; it does not allow to prove the
existence of the ultraviolet limit. But the probabilistic measure of the set of fields
where this lower bound is reached is in fact very small and therefore Z, converges
[Erl].

Let us prove this using our standard splitting of the propagator as C' = Y C%;
we write : ¢ : = : QSﬁ =0 b 1, with : ¢t 1 =1 ¢} — ¢} | . To compute

Z,— Z,_1, we apply, for each i, i = 0,...p, a Taylor expansion in : ¢** : up to
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order n; = 1 + a - i, where a is some large integer to be fixed later®. This means
that we write:

Z, /dup pp)e 9 a oty T+ B2, (IIL.1.51)

i

where the operator 1™ takes the beginning of the Taylor expansion in ¢; of Z up
to order n; — 1 and R™ takes the Taylor remainder at order n;.

In fact we stop expanding the product in (III.1.51) as soon as a remainder
term is produced. This means that we write

[[a + ) = H I 4 Z R TT™). (I11.1.52)

A 1>7]

We obtain a sum of p + 2 terms. In the term with index j in the sum, the
exponential of the interaction has cutoff j, so it satisfies the bound:

2

eI < K K= N0 (IIL.1.53)

In the first term [[, I™ there is no interaction at all; by convention we can consider
that it corresponds to j = —1, with R,, | =1, and K_; = 1.

For ¢ > j the derivations in the I™ operators have produced k; < n; Wick-
ordered vertices with highest leg at scale ¢, and for j # —1 the R™ operator
produced n; = 1+ a - j vertices with highest leg at scale 7. We integrate all these
vertices with respect to the gaussian measure, and obtain a sum of graphs with
no tadpoles since the vertices are Wick-ordered. These graphs are then bounded
with the universal method of part II. In section II.1 we remarked that for the con-
vergent graphs of a superrenormalizable theory (which is the case considered here,
since the divergent tadpoles are forbidden), we obtain some vertical exponential
decay in index space between the highest scale of each vertex and the 0-th scale.
This is different from the just renormalizable convergent case, for which vertical
exponential decay occurs only between the highest and the lowest scale of each
vertex.

Hence there is a small constant € and a large constant C; such that if n =
nj+ Y s ki =nj+k k=3, ,k; is the total of all vertices produced:

Z) < Y K;- Ly Y (g-Comat[[ MR (I11.1.54)

j=—1 {ki<1+a-i} i>j

where we recall that K; = eK-95° if 7 4 -1, K_1y = 1. and we define similarly
L; = M—<3” for Jj# —1and L_; = 1. The factor L; corresponds to the power
counting earned for the n; = 1 + aj > aj vertices produced in slice j, and the
factors M ~¢"¥*i to the power counting earned for the vertices produced at slices

¢ > j. This sum is bounded by a constant as p — oo, if a is taken large enough.

* The factor 1 is there so that even in the slice i = 0 an expansion is performed.
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Indeed let us choose first a large so that g K < €-a/2. In this case K; - L; < \/Lj;.
We use the binomial boud n! < 281447 kl(1 + aj)! and define

= Z 1+ aj)l(2C, - g)'Tede=<(@/Di* <1 4+ |g|C” (I11.1.55)

to get the bound:

29C1)% k! ik,
Z,| <C ) 3 (gkvl) (H.k.')2H((ki!)2M ) (IIL1.56)
k {ki<a.i,Y ki=k} ' A

Since k; < a.i, there exists a constant Cy such that ((k;!')2M ¥ < Chi .
M—(€/2)i'ki - Hence:

k ! .
Z ) <C-> ) (296;;02> (Hk']{:")QHM—(E/Z)l"fi (I11.1.57)
ko (ki) ki=k} ’ iy

Using the multinomial identity, we have, if we define C3 = > .2 M —(e/4)1,

2 2)k 2
Z,| <C-> M < O 2205 (TT1.1.58)

hence we have proved a uniform upper bound on Z, as p — oco. A constant
lower bound on Z, in this particular case is provided in a cheap way by Jensen’s
inequality:

du(B)e—9:9" > =9 [ dun@)o"s _ I11.1.59
11(9)

since the integral of a Wick ordered vertex vanishes.

In fact, applying the same expansion to Z, — Z,_1 we would prove in the
same way that Z, is not only bounded, but converges as p — oo. Furthermore by
(III.1.55) C' < 1+ |g|C’, with C" a constant, hence the limit Z(g) = lim,_.o Z,
is 1+ O(g) at small g (in fact 0(g?) would be easy to obtain, again because the
integral of a Wick-ordered vertex vanishes).

Altogether we have proved:

Theorem II1.1.4 Ultraviolet limit of finite volume ¢
For any coupling constant g we have lim Z, = Z(g) = 1+ O(g), so that Z(g) is
p—00

continuous in ¢g at ¢ = 0 (it is in fact Borel summable [EMS)).

Starting from this result, we may apply the cluster and Mayer expansion to
construct the thermodynamic limit of the theory at weak coupling just as in the
single slice case discussed above. This is left to the reader.

Of course these results extend without effort to the P(¢), model for P any
polynomial bounded below. The cluster and Mayer expansions again require small
coefficients in this polynomial (which means a high temperature regime in statis-
tical mechanics).

The lesson to be learnt is that to control this first example of a non-trivial
ultraviolet limit, one has to push perturbation theory farther and farther at higher
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and higher scales. This results in a net gain because the typical integration region
of a local object like a vertex is smaller and smaller at higher energy. This idea
will be developped in a more optimal way in the multiscale expansion of the next
section, in which we introduce a lattice of cubes adapted to each scale of momenta
and test for the presence of interaction vertices of the corresponding scale in each
cube of this lattice.
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II1.2 The phase space expansion: the convergent case.

The author feels that this technique of deliberate lying
will actually make it easier for you to learn the ideas.
Once you understand a simple but false rule, it will
not be hard to supplement that rule with its exceptions.
— D. E. Knuth, The TEXbook.

A. The vertical expansion and convergent polymers

We turn to a description of the natural generalization of the cluster expansion
of last section in the case of a model in which the principle of phase space chopping
becomes necessary.

What are the models of this type? Consider first the massive ¢* theory in
dimension d. For d = 2 the renormalization problem reduces to Wick ordering. We
have to do some momentum analysis but we can avoid spatial localization, hence
a true phase space expansion as shown in the preceding section. But for d = 3
phase space chopping starts being truly useful [GJ1]. Three dimensional theories
are therefore a classical testing ground for the phase space expansionist [Bal]. It
would be interesting for the reader to test also the version of the phase space ex-
pansion defined belo to ¢4, and compare it to the original constructions [FO][MS1].
However our formalism is really designed for marginal, just renormalizable theo-
ries, so we focus directly on this case. For ¢%, which is not asymptotically free,
the phase space expansion simply proves that if one starts with a bare theory with
a bare coupling small enough so that the first cluster expansion at the bare scale
converges, then the resulting renormalized theory is a free field. This phenomenon
is discussed in the next section (Theorem III.3.2).

Therefore in order to get some non-empty constructive results we have to look
for other models: in the next section II1.3 we discuss how to apply the phase space
expansion to the infra red (critical) ¢} (with fixed ultraviolet cutoff) and in section
IT1.4 to the massive Gross-Neveu model in two dimensions, which is asymptotically
free. In the concluding section III.5 we discuss the much less advanced case of the
ultra violet limit of non-abelian gauge theories, where the hope is to gain a non-
perturbative understanding of asymptotic freedom.

The phase space expansion is a rather natural extension of the cluster expan-
sion, but it leads to several additional technicalities. Sticking to our principle of
dividing the difficulties into pieces easier to digest, we propose in this section an
overview of the formalism and a constructive analogue of section II.1, namely an
analysis of the convergent cases (with favorable power counting). For this limited
purpose our standard model, massive ultra violet ¢3, is still perfectly convenient.

We want to find the analogues of the phase space slicing of part II, but in
a context no longer limited to Feynman graphs; we have to perform true func-
tional integrals. Hence it is not enough to consider propagators only, and we must
use the language of fields. We slice the covariance of our gaussian measure, e.g.
with a-space cutoffs as in (II.1.2-4). To this slicing of the covariance is associ-
ated the corresponding orthogonal decomposition (II.1.5) of the gaussian measure
dp = ®@du’. The field ¢ becomes a sum of random variables ¢ independently
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distributed according to du®. ¢° will be called a field of frequency (or index) i,
which means that it corresponds to momenta of order M?. In each momentum
slice i the gaussian measure dy’ is factorized and obviously one should perform
one corresponding cluster expansion, this time with respect to the scaled lattice
D? of cubes of side size M ~%. These are called the horizontal cluster expansions.
However this is not enough, as in the single scale model, to get the factorizations
necessary for the thermodynamic limit, because now the interaction still couples
the various horizontal slices. Remember that ¢* vertices were pictured as dotted
vertical links, dual to the horizontal propagators in Fig.I.1.2. One should find
therefore a kind of vertical cluster expansion which is the analogue of the hori-
zontal ones, but for these dual vertical links. Finally there is the question of the
Mayer expansion, which we discuss briefly, anticipating on the following.

The simplest solution is to perform first all the horizontal and vertical cluster
expansions, hence to obtain a dilute gas of polymers with hardcore interactions
swimming in the “d + 1” dimensional phase space, and apply a single Mayer ex-
pansion to it. This point of view is all right as far as the bare theory is concerned
(or for superrenormalizable theories like ¢3 or ¢2, where only simple mass renor-
malizations have to be performed). But in the case of just renormalizable theories
we want to compute the analogue of the usefully renormalized expansion with ef-
fective couplings, whose advantages were detailed at length in Part II. This means
that at each scale ¢ we want to add and subtract a counterterm which in analogy
with section II.4 is (in the case of the coupling constant renormalization) a sum
over all polymers with 4 external variables made with the fields and propagators of

higher slices. To be of the desired form [, ¢f (with ¢; = > ¢7), such a countert-
§=0

erm has to live in all of A without hardcore constraints. In order to combine this
counterterm with the four point polymers, the hardcore constraints between these
polymers have to be removed. As shown in the preceding section, this is exactly
what the Mayer expansion does. For this reason, we cannot wait for a single Mayer
expansion only in the end, and in each new slice after the corresponding horizontal
and vertical cluster expansions have been performed, a Mayer expansion has also
to be performed.

The drawback is that it is difficult to visualize the result of the corresponding
sequence of Mayer expansions. Indeed Mayer configurations are sequences of over-
lapping polymers, which can at best be pictured as superposed strata. Iterating
the superposition of such strata becomes really tedious to picture. This is one
of the reasons for which we decide to postpone the corresponding formalism and
the problems related to renormalization to the next section, where they will be
treated in the concrete case of infrared ¢}. The goal of this section is to familiar-
ize ourselves with the phase space expansion in the limited context of convergent
polymers; in this case the sandwiching of Mayer expansions between each clus-
ter expansion is not necessary, and will not be introduced. Hence this chapter is
really the constructive generalization of chapter II.1. We will discover the basic
mechanism of convergence of the phase space expansion in a context free of the
technicalities associated to renormalization; we hope that the experience gained
in this way will be valuable to throw light on the general case.

Let us return to the “vertical” cluster expansion. What kind of interpolation
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formula should be applied to the vertex [(> ¢*)* which mimicks the interpolations

3
of the preceding sections for the propagator? Again the key requirement is that this
interpolation preserves positivity. As usual it is convenient to start from the bare
theory, hence from the highest momentum slice, and proceed downwards towards
the renormalized theory. Therefore the first interpolation should separate ¢* from
p—1
the rest, which is ) ¢" = ¢,_1. Also there should be a different interpolation
0
parameter, called A (not to be confused with the s parameters of horizontal
cluster expansions) for every cube A of D, since these are the units which the p-
th horizontal cluster expansion tries to decouple. One of the simplest interpolation
satisfying positivity is

/Ag(<zﬁf’+<z5p_1)4=[/A (¢” + tagp—1)* (1—t4)/Ag¢§_1]|tA:1 (I11.2.1)

with g the bare coupling constant. This is an analogue of formula (I11.1.8), taking
into account that we have now a quartic object (other formulas are of course pos-
sible). The p-th vertical expansion consists in applying, after the p-th horizontal
cluster expansion the operator:

I t+R)

AeDr

o [ 9@ +tad,— ) +(1—th) [, 945,
{ A (I11.2.2)

where I f takes the beginning of the Taylor expansion of f in A up to some fixed

order p, and R f takes a Taylor remainder fol dta (1_;%)1’ j;:l f. We allow for the
’ A

possibility to have p > 1; in fact for horizontal cluster expansions a single Taylor
step always gives sufficient decay because the sliced propagator has fast decay, but
this is not true for the vertical expansion. We have seen that, in the case of ¢, it
is only for graphs with more than 4 external low momentum legs that exponential
decay in the vertical direction is guaranteed. Since each ﬁ derivation generates
at least one external low momentum leg ¢,_1, in dimension 4 it is wise to choose
p = 4, so that we are sure that the remainder terms correspond to a situation in
which vertical exponential decay occurs.

The inductive generalization of (I11.2.2) to all scales is easy. Writing D for the
union of all scaled lattices D covering A with cubes of side size M=%, 0 < i < p,
we introduce a parameter tn for each A € D. Then for fixed x € A we call
ti, 0 < i < p the parameter of the cube A € D? to which x belongs and we write:

¢it)=>_ [ ][ tl ¢’ (I11.2.3)

Jj=0  j<k<i
7=0 =0 {t}=1

¢4<x>=(i¢f )zil—tm bi(1))"
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where by definition ¢,4; = 0.
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In some cases it may be convenient to use smooth characteristic functions

A(x) for the cubes A; then one defines:

aw, (1) = [ [2 NN ] oi({tha) = 3 ale, {th i, ))éd (x)

J<k<i-AeDFk <t

(I11.2.5)
and one writes
/A(zz:; ¢i($)>4dx = /Adx Zz:; [1 —a(x,t,i,i+ 1)4] oi({t}, x) e (I11.2.6)

where again, by convention tA = 0 if A € D?*1. Formulas (I11.2.5) and (I11.2.6)
are rather complicated, and we shall not use them in this book; but the use of
sharp characteristic functions has some drawback too, and the reader will see below
that it forces us to treat a small piece of the gaussian measure in the form of an

6f3u¢8u¢, with € a small constant.

interaction e
For this reason, and for the treatment of models with counterterms, it is
convenient to give also rules to interpolate fields with derivatives and quadratic

interactions, like m? f ¢? and € f 0,00"¢. We use the interpolations:

Dpui(t) _Z IT tl 0.0 (I11.2.7)

Jj=0  j<k<i
P
of =) (1 ti)(@i(t)? (IT1.2.8)
i=0 {t=1}
Oup0"¢ = Z — 1741)[0,0:(4)0" 6i (1)) (IT1.2.9)
fi=1}

We should think to these formulas are the inductive generalizations of natural
interpolation rules analogous to (II1.2.1):

/ m* (¢ + ¢p1)” = [/ (m*)(0° + tady—1)” + (1 - m/ (m*)(@p-1)*]lea=1
A A A
(T11.2.10)

/A6(8u¢p+8u¢p—l)(8#¢p+8#¢p_1) = [/A f(8u¢p+tAau¢p—1)(8“¢p+tA3“¢p—l)

+(1 —13) /A f(8u¢p—18#¢p—1] lia=1 (IT1.2.11)

Until the expansion at scale 7 we should put every parameter tA with A € Dy,
J <1 to 1; then after the cluster expansion of scale ¢, the interpolating parameters
ta with A € D; are introduced for all fields (both in the exponential of the
interaction and in fields already derived by former expansions). Remark that
derivatives and ¢-dependence do not commute; indeed the t;’s are functions of x,
by our convention that ¢ is the parameter o such that 2 € A € D¥. To ensure
that 8M¢j is of order M7¢7, as it should, it is essential to write the ¢t dependence
of derived fields always after performing the derivative, otherwise the derivative
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could act on a characteristic function of a cube of much smaller size, hence be
much bigger than what is expected.

The phase space expansion consists in applying at each scale, starting from
p, a horizontal cluster expansion, for instance of the tree type as in the preceding
section, then the vertical expansion, which means that we apply to the functional

integral the operator
| | (1(4) + R(4)) (IT1.2.12)
A A -4
A€eD’

where [gl) takes the beginning of the Taylor expansion ta at ta = 0 up to 4'h

order and Rgl) is the Taylor remainder. To compute the result of this vertical
cluster expansion at scale i, we expand the product (II1.2.12), and when the Igl)
term is chosen we draw a thick line at the bottom of the cube A as in Fig.I11.2.1.
This thick line is a sort of vertical analogue of a Dirichlet condition; it suggests the
corresponding decoupling of frequencies. We call it also a “closed gate”. When
RA is chosen the corresponding “gate” is open. The cube A should be thought
of as connected through this open gate to the larger cube A’ € D=1, A’ D A.
Remark that dotted vertices then cross this open gate, with a total of at least 5
low momentum fields ¢;_; hooked to them. Such an open gate is also called a
strong connection, and guarantees automatically a favorable power counting.

Let us make the notion of connectedness in phase space more precise. We
say that two cubes A € D* and A’ € D7 are directly connected if either (we may
assume j < i):

— there is a propagator (horizontal line) between them. This is as before. It
requires ¢ = j and the propagator is generated by the i-th horizontal cluster
expansion.

— A C A’ and there is a vertex (dashed vertical line) localized in A with two
fields hooked to it, one of scale i and the other of scale j *.

— there is an open gate between them. This requires i = 7 +1 and A C A’.
This open gate has to be generated by the i-th vertical cluster expansion. The
cubes A and A’ are said to be directly strongly connected.

The first and second conditions are easy generalizations of the horizontal and
vertical connections of perturbation theory, but the third one corresponds to a
remainder term which has no equivalent in perturbation theory. As remarked, in
this third case there are at least 5 low momentum fields localized in A.

The notion of connectedness is then extended so that cubes A; and A; which
can be joined by a chain of directly connected cubes are connected. Maximal sets

* In [FMRS5] an other rule is used: vertical connections which connect A to
A’ are also required to connect together all the cubes A” which are between A
and A’ (i.e. such that A ¢ A” C A’; the horizontal analogue would be to require
that propagators between two cubes connect together all cubes on a straight line
between the two ends of the propagator. Both points of view are perfectly valid
and lead to slightly different phase space expansions but which are both convergent
(because by power counting the vertical links decay exponentially). But the point
of view used here is certainly more natural.
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of connected cubes in phase space are called polymers. It is also convenient to
define strongly connected domains. Two cubes are said to be strongly connected
if they can be linked through a chain of directly strongly connected cubes, and
the corresponding maximal sets are the strongly connected domains, pictured in
Fig.IT1.2.2. Hence they are defined exactly like the polymers, but only connections
of the third type are taken into account. Omne should think to these strongly
connected domains as to elementary buiding blocks of the phase space expansion
in which the interaction is not decoupled.

To understand better the whole expansion, it is a good exercise to visualize
how it works in the first slices.

In the p-slice we perform the first horizontal cluster expansion with the gaus-
sian measure du” corresponding to fields ¢” and covariance C*? and with respect
to the cubes of D”; then we perform the first vertical expansion. We obtain a
sum over a gas of disjoint p-polymers which is an analogue of formula (ITI.1.15);
these polymers are defined again as maximal connected objects. By convention
again, it is convenient not to consider the empty isolated cubes as polymers, which
leads to a new trivial normalization of the polymers similar to (III.1.14-16). At
this stage the only connections to take into account are the propagators of the
p-th horizontal cluster expansion. The integration by part analogue to (II1.1.23)
and the vertical expansion derive some low momentum fields ¢,_; which (together
with the true external fields, of scale -1) should be considered as external variables
at this stage (¢,_1 is usually called the “background field” at this stage).

The p—1 cluster expansion is then performed, with respect to fields ¢?~!, the
gaussian measure du”~! and the lattice of cubes of D?~!. Remark that this may
result in propagators connecting cubes of D?~! already connected (through scale
p). Then we perform the p — 1 t-decoupling expansion (in which all the remaining
former external fields ¢,_; get decomposed into ¢*~! or ¢,_»). We get a formula
which is a sum over (p — 1)-polymers which are maximal connected objects made
of disjoint sets of cubes of D?~! and of the p-polymers previously generated. The
low momentum fields ¢,_» are the new external set of variables. We iterate the
process, generating ¢-polymers, until scale 0 is reached.

At the end of the horizontal and vertical cluster expansion the partition func-
tion is expressed directly as a sum over vacuum 0-polymers of the type (II1.1.15),
with hardcore constraints over the whole phase space. The pressure could be com-
puted by a global Mayer expansion of these constraints. For Schwinger functions,
we would have only the true external fields (with index -1) left as external vari-
ables of the 0-polymers and we can choose the last Mayer expansion adapted to
the precise quantities we want to compute (normalized or truncated Schwinger
functions). This Mayer expansion generates configurations made out of these con-
nected O-polymers, joined through “—1 Mayer links”. These Mayer links, which
force the polymers to overlap, may also be considered as new connections, so that
connected functions are given by a single such configuration with the prescribed
set of true external variables according to (I11.1.46).

It is time now to define the analogue of almost local subgraphs. Just as
before with simple graphs it is useful to consider, for a given O-polymer and a
given slice 7, the set of all i-subpolymers G, which are defined inductively as the
maximal i-polymers (made of cubes of D? and of (i + 1)-subpolymers) which are
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connected through connections of indices higher or equal to ¢. Again the };’s will
be connected later together by lower scale connections and they have therefore
tree structure.

A convergent O-polymer is the obvious generalization of the convergent assign-
ments for graphs at the beginning of Section II.3. It is a O-polymer such that any
almost local subpolymer G has at least 5 external variables (low momentum fields
or true external fields) hooked to it. (As for graphs, in the last slice this condition
requires that there at least 5, and by parity in fact 6 true external fields; hence
strictly speaking we have no completely convergent 0-polymers unless we consider
Schwinger functions with at least 6 external arguments; but this problem may be
technically circumvented if necessary by performing a single global subtraction.)
It may be interesting to remark again that any G% which contains a cube A € D*
with tA # 0 (open gate) automatically satisfies the convergence condition because

4th

the tA expansion has been pushed to order so that in the remainder at least 5

low momentum legs have been generated.

The reader should be aware that many technical features of the expansion are
optional. In particular the rules we have just described are simple and systematic
but they are far from optimal from the point of view of “minimal expansionism”.
For instance, having read section III.1, the reader might object that the brute
force formulas (II1.2.2)-(I11.2.12) reminds him of the “pair of cubes” expansion
and that presumably they do not give the minimal way to decouple slices in the
vertical direction. This guess is correct; just like the “pair of cubes” expansion
sometimes builds redundant horizontal loops, the vertical expansion defined above
can build redundant vertical connections, i.e. link vertical regions with much
more that the minimal number of fields necessary for convergent power counting.
This phenomenon can be avoided and there is a more economical way in terms of
expansion steps to decouple vertical regions, but as usual it is of a more inductive
character. Instead of introducing one parameter ta for each cube of the p-th slice,
we may introduce a single parameter t for each of the regions of A which have been
connected by the ordinary horizontal cluster expansion in the p slice performed
before [dCAVMS]. In the previous formalism this is equivalent to equate, for all
p—polymers P the parameters ta for A € P to a single parameter tp, and to
perform the Taylor expansion (II1.2.12) for all ¢ p’s rather than all £5’s. In the same
vein one should, in the p—1 horizontal cluster expansion, introduce interpolating s
parameters which test the coupling through C*~1! of the blocks of cubes connected
together through the previous connections, instead of testing blindly between all
cubes of DP~!. At the end of this p — 1 cluster expansion, we have a gas of p — 1
polymers P’ and new parameters ¢p/ are defined for the p — 1 vertical expansion
through the collapse of the corresponding set of tA parameters, A € D=1, and
so on. This optimized version has many advantages, in particular the superficially
convergent i-polymers (i.e those with 5 external legs ¢;y; or more) do coincide
with the remainder terms in the vertical expansion, so that in a sense they stand
out more clearly; also if phase space was used for practical computations it would
be presumably optimal to expand in this minimal way. Finally it seems a general
rule that expansions with minimal decoupling are always better from the point of
view of preserving positivity. In models with more marginal positivity than ¢*,
such as the Gross-Neveu model in three dimensions of section IT1.4B, the optimized
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expansion becomes truly necessary. Here for simplicity we choose to stick to the
systematic rule (II1.2.2). The convergence proofs that we provide below also apply
with some modifications to the optimized expansion, for which we refer the reader
to [dCAVMS].

We propose to study the convergence of the phase space expansion in the situ-
ation which corresponds to Weinberg’s uniform theorem (II.1.9) or more precisely
to its generalization (II.2.1). In this case every contribution has to be conver-
gent from the point of view of power counting. Hence the analogue of Weinberg’s
uniform theorem in the phase space expansion is:

Theorem II1.2.1 Convergence of the phase space expansion in the case
of completely positive power counting

The sum over all convergent polymers of the phase space expansion is absolutely
convergent, uniformly in p and A, provided g, the coupling constant, is small
enough; it has a limit as p — oo and A — oo which one might call the convergent
piece of the ¢} theory. (Of course this limit is not a field theory and depends
strongly on the particular rules we have taken for slicing, etc., ..., because every
polymer which violates the convergence condition has been arbitrarily set to 0).

Proof The proof does not reduce only to a tedious exercise in patching together
everything we know by now about cluster expansions and tree combinatorics in
the strange “d+ 1" dimensional phase space. It involves a new difficulty which did
not appear at all until now, which is the possible proliferation of low momentum
fields. The solution to this problem is called the “domination” of low momentum
fields, and it uses in a crucial way the positivity of the interaction. For a bet-
ter understanding we provide now an informal discussion of the problem and its
solution.

B) Overview of the domination problem

First one should remember that although the initial functional integral has
been quite chopped by the phase space expansion, the subpolymers still contain
true functional integrals, hence are not simply ordinary graphs. Of course this was
already true for the single scale cluster expansion of the last section. But in that
case to bound the functional integral which was of the form

(H ¢j) e 99" du( ) (II1.2.13)

4
we applied simply a Schwartz inequality to separate [[ ¢; from e_f 99 ; in other

words we used positivity of e_gf %" to bound it by 1, and we bounded (] ¢;) by
integrating it with du(¢); this is what we call “gaussian integration” of the fields
¢; produced by the expansions. The corresponding bound is similar to what would
be obtained in perturbation theory.

This is all right for a single-scale model. However, when many scales are
present, and a given vertex va in A € D? produced by the horizontal and vertical
expansions of scale i has both high momentum fields ¢* and low momentum fields
¢’ hooked to it, j < i, we can use “gaussian integration” for the ¢’ fields, but
it could be unwise to use it for the ¢’/ fields. Indeed, we would lose the correct
power counting or generate a fraction of the factorial divergence of perturbation
theory, depending on which point of view is used. We will discuss these two points
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of view to understand well the problem; then we will present the solution, again
discussing it from both points of view. The domination problem is indeed tricky
and worth being discussed thoroughly.

At scale 7 the computation of the cluster expansion involves functional deriva-
tions which can be expressed as C*(x, y)%&(az) 52)1- (y), ze A,ye A, A;A" € D"
These functional derivations 6%1- (x) can derive vertices whose three other fields are
not of scale ¢ but of a lower scale, by the obvious analogue of (II1.1.23):

o ) (Zl ¢j> — —49/A(§: ¢j>3e_g ) (Zl ¢j> (I11.2.14)

Also the vertical expansion in the parameter ta typically creates such vertices,
both in the remainder term R*) of (II1.2.12) (at least five low momentum fields
are derived) and in the term I*) of (II1.2.12), which is taken at tx = 0; remark
however that in this last case the number of such fields is at most 4. Let us
consider what happens if like in the previous, single scale model, we use a Schwarz
inequality to evaluate the corresponding derived low momentum fields of index
J < i by gaussian integration.

We have to remark that the gaussian piece available in A for ¢’ will be much
weaker than for ¢*. To see this let us write intuitively the gaussian measure like

in (I1.3.1) as e_f¢(p2+m2)¢.D¢ in terms of an ill defined Lebesgue measure D¢.
Then the slicing cutoffs tell us that typically p? in the slice j is of order M2/, hence
much smaller than p? in the slice i, which is typically of order M?*. Therefore
using e /s ¢Jp2¢J.D¢j to integrate over ¢/ is worse than using e~ Js ¢1p2¢Z.D¢";
by simple scaling it results in a loss of M (—9) per low momentum field integrated
in this way, in comparison with the estimates of the single scale model (the effect
of m? is negligible for an ultraviolet problem where i and j are big).

The defect of this point of view is that the Lebesgue measure does not exist;
nevertheless it leads to the correct conclusion, as we see now by introducing the
more rigorous second point of view, in which the gaussian integration over low
momentum fields like ¢/ is rigorously evaluated as a sum of graphs. In this second
point of view the domination problem shows up as a piece of the divergence of
perturbation theory. We know that gaussian integration leads inescapably to local
factorials of the number of fields integrated (see Lemma I1.6.2). For fields ¢’ the
corresponding local factorials are harmless because they can be beaten by the
volume argument (Lemma III.1.3). Ultimately this is because the cubes of the
t-th cluster expansion are of the correct size for the i-th momentum slice. But this
is no longer true for low momentum fields ¢/ created by the i-th cluster expansion;
in other words, a lot of ¢’ fields may be produced in a single cube A of D/, each
of which coming from a different cube A’ of D?, simply because there are M*(@—7)
such different cubes A’ in A. In Fig.II1.2.3, a typical “worst scenario” is pictured:
it is a simplified situation, in which each cube A’ € D sends three low momentum
fields (corresponding to a single vertex) in A € D7.

By our former remarks if A € D/ and ta» = 0 in the ¢ decoupling expansion
for every A” C A, A” € D/t only a finite (4 x M*) number of fields ¢/ created
by higher scales expansions can enter A. Factorials of such a constant number



145

are harmless. The worst-case situation of Fig.IT11.2.3 can occur only if the ta~
parameters for cubes A” intermediate between the cubes A’ of Fig.II1.2.3 and the
cube A are nonzero. In other words the corresponding cubes have to be connected
by open gates and belong to the same strongly connected domain. These domains
where the interaction is completely undecoupled are therefore truly responsible for
the domination problem.

To measure precisely the local factorial effect generated by the gaussian in-
tegration of low momentum fields, consider the situation of Fig.II1.2.3; let n =
M*@=3) be the total number of vertices, which is also the number of cubes A’
in A, since we postulated one vertex per such cube. The total number of fields
¢’ localized in A is then 3 - M*(=7) = 3n. There is no permutational symmetry
among the vertices since they lie in different cubes A’. The gaussian integra-
tion of the high momentum ¢ fields costs only (const)” (by Lemma I1.6.2), but
the gaussian integration of the 3n low momentum fields ¢7, by the same prin-
ciple, costs (const)™ (37”)' Finally propagators C7 have a scaling factor M 1%
instead of M?* for C?, and this creates in the estimate a relative bonus of or-
der M—20=0)"%" ~ (const)™ [(%)!]_1. Hence the total contribution is of order
c” (?jT")!, consistent with the intuitive picture that “three-fourths” of the ordi-
nary divergence of perturbation theory has been developed, because three fourths
of the n fields are packed in a single cube of the size corresponding to their fre-
quency. It is also consistent with the heuristic prediction of the first point of view:
a loss of M(=7) = p1/% per low momentum field means here a total loss of n(1/4)3n
corresponding to the factor C"™ (%T”)!.

A physicist might be shocked by Fig.IT11.2.3, and remark that “one high mo-
mentum leg and three low momentum legs” is a somewhat surprising contribution
which does not obey momentum conservation, hence might be suppressed in some
way or an other. However momentum conservation is partly incompatible with
the principle of phase space localization, so that to implement this idea is difficult.
A vertex summed over a small cube corresponds in momentum space to a convo-
lution which can bring momenta of order the inverse size of the cube. To exploit
momentum conservation at the lower scale it is therefore essential to integrate the
corresponding vertices over cubes of a sufficiently large size, hence to free them
from the constraints of localization at the higher scale. Moreover technically it
requires also cutoffs which preserve momentum rather well. In spite of these dif-
ficulties this idea is interesting and will be used in the next section for the Borel
summability results. But it is clearly not enough to solve alone the domination
problem. We see indeed that even in the case (certainly allowed by momentum
conservation) where each vertex would have only one or two low momentum legs,
a divergent factor (respectively (%)! or (%)') would still appear.

Therefore we cannot escape the conclusion that in such cases the functional
integration over low momentum fields should not be done using solely the decrease
of the gaussian measure.

The only other alternative available is to make better use of the decrease of
the ¢* interaction itself, and immediately everything ffalls into its proper place.
— [ ¥

Returning to the first point of view, we saw that e was much weaker

_ 1,2 11 . .
than e N2 , because in the first case p? ~ M?/ and in the second p? ~ M?

so that in the first case the typical size of ¢/ is M 27, much larger than the typical
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. . _ 1 \4
size M of ¢!. But this is no longer true if we use e 7 fA(¢J)

ase ? fA(¢l)4; both gives a typical size g~'/*M? to the field (since the volume |A|
is M~%). In other words the ¢? interaction is scale invariant, hence much better
in this respect than the gaussian.

In the more rigorous second point of view, where we consider the large number

, which is just as good

(3n) of fields ¢/ which accummulate in a single square A to give (2)! by Wick
theorem or Lemma I1.6.2, we know that a quartic integration gives only half as
much factorials as a gaussian one; this is nothing but the formula

n n

/x"e_xQd:r ~ (c)" (5)!, /:r”e_m4da7 ~ (c9)" (Z)' (II1.2.15)

Therefore quartic interaction will result in a (3—”)' (times g~ % to account for the

4
coupling constant in front of ¢*). Combining this with the relative bonus (BTM)_l

which is unchanged since it comes from the scaling of ¢’ (now of order M7 instead
of M*%) we obtain (const)™g~ %", or more precisely (const)™g™% if the factor g in
front of the n derived vertices is included. This is perfectly summable if ¢ is small
enough.

We realize that it was unreasonable to expect earning a full small factor g for
each derived vertex, when possibly only one fourth of the fields of these derived
vertices were of the correct scale! We must abandon this pretention and accept to
earn only a more reasonable ¢g'/* factor, still sufficient of course for convergence
purposes. This is done in two steps: gaussian integration of the high momentum
1/4 per such field, and a bound on

the unwanted low momentum fields which compares them back to the exponential

fields, a positive operation in which we earn g

from which they were derived; this second operation is neutral from the point of
view of estimates (no significant gain or loss except a constant per field).

This sketchy solution of the “domination” problem requires as a crucial point
not only the positivity of the interaction (which was required already for the simple
existence of the functional integral in a single cube) but also its decay at large ¢
(see (II1.2.15)).

We have completed our tour of the problem and its solution, but we want to
treat a particular simple example with more care to uncover some subtleties. In
particular the reader might have remarked already at this stage that the exponen-
tial of the interaction contains interpolating parameters ¢ which are not necessarily
the same than those of the low momentum fields to be dominated, and might worry
about that. He might also ask how to separate in practice the high momentum
fields from the lower ones in order to apply the domination principle. We adress
these questions now.

The functional integral within a strongly connected set (set of cubes connected
by open gates ta # 0) may be bounded as

|/ABCPdu(¢)| < P[/ B2du(¢)]'/? sup |AC| (T11.2.16)
¢

where A is the exponential of the interaction, B is the product of all high mo-
mentum fields (i.e. whose which have index equal or greater to the index of the
expansion step which created them); C'is the product of the low momentum fields,
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and P is the product of the explicit factors produced by the cluster expansions:
explicit propagators, s and t parameters and coupling constants. The interaction
in the exponential is a sum of type (II1.2.4), each term having a particular ¢ depen-
dence and a particular smearing function. We must check that the low momentum
fields in C' have t dependence and smearing functions compatible with the desired
bounds. For simplicity let us use sharp characteristic functions. Two main techni-
cal points must be understood, namely the smearing of the low momentum fields
and the reconstruction of the t dependence. Both problems are solved in the same
way, by introducing some new, harmless set of “high momentum fields”. Let us
show in some detail how this is done for the simplest possible example, a model
with only two slices, i (the higher one) and j < i (the lower one). The field is
¢ = ¢' + ¢ and we consider a cube A € D*. We want to apply a bound of type
(II1.2.16) to the concrete case:

A = o0 [ @) =t (0] (ITL.2.17)

“BO” = /A o' () (¢ (x))3d*x (T11.2.18)

The exponential of the interaction is smeared with the characteristic function of A
(in simple words: integrated in A). The vertex is also smeared in A. However we
cannot use this smearing function directly to compute the supremum in (I11.2.16),
precisely because we want to separate the high momentum field from the low
momentum field. (This is an elementary point, but one that we stress because
it took us some time to understand it...). We have therefore to factorize first
(IT1.2.18), which is not yet a true product of the form BC' (hence the quotes around
BC). This is done by smearing each low momentum field, hence by writing:

i) = (=) [ b () iy
V@) = (5 [ oty 0@ (111.2.19)

The fluctuation field §¢’ may be written as an integral of derived fields O¢?:

o) = (ﬁ) /A d4y/0 dt(y — 2)"0,¢7 (v + t(y — x)) (IT1.2.20)

Such a 8M¢j field has an improved power counting; in this two-slice model it
can be considered as a high momentum field and integrated with the gaussian,
since the factor (y — x)*d,, gives a bonus of M7~ exactly like in renormalization
(see sect.IL.2, after I1.2.8). This is because the 0 acting on ¢’ gives M/ and
|z —y| < V/4M~? since both z and y belong to the same cube A of D?. This factor
MJ~% compensates the bad factor M*~7 lost before, so that it is legitimate from
the point of view of estimates to consider §¢’ in this simple two-scale example
as a high momentum field. In the general multiscale case, this is no longer true,
because we need to gain more than M7~%, to allow for summation over j. Hence we
have to apply again formula (III.2.19), but now to d,,¢. The remainder contains
00 fields which can be now really considered as high momentum fields (for them

we gain M20U~9), We also get smoothed d¢ fields which can be dominated if,

Oy pO*

with some hindsight, we include in A a small piece e_f ¢ of the gaussian,
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treated as an interaction. This rule corresponds to the fact that we are safe only
when the propagator becomes summable in x-space, see Theorem III.1.1b. The
corresponding formulas are given in the next section for the infrared case, so we
do not elaborate further here on this subtlety.

Developing the third power of (II1.2.18) we obtain a sum of terms now fac-
torized, one of which is e.g. B'C’, with:

B = [ dwesiens. o= ([ dwi) (111.2.21)

C' is not yet in a form suitable to take a supremum with A. Nevertheless we
see that there cannot be any serious difficulty because the interaction in (II1.2.17)
interpolates between (¢7)* and (¢*+¢7)*, and because each low momentum field ¢’
may be written as ¢’ + ¢’ — ¢’ at the cost of introducing some new high momentum
fields. More precisely we write each ¢/ as

(1=0)¢ +(¢' +1¢7) — ¢’ (I11.2.22)

and expand. Again the ¢ fields are high momentum fields which lead to an other
redefinition B”, C” of B’, C', and in C” we have two possible types of smeared
low momentum fields left, (1 — )¢’ and (¢° + t¢’). We use for them a Holder
inequality, taking into account that |A| = M %%

1/4

1 j 4 i 4 j 4 54
=0z [Pty <= [ @) (I11.2.23)

Similarly:
[ @ty <ar [ @+ 0y ) (.2.24)
A A

and we conclude by the bound z'/4e=* < const. Hence each low momentum field
dominated produces (up to a constant) a factor g~ V/AM? as expected.

The general rules for domination are derived from this simple example, and
shown now in more detail. Several technically different solutions exist, e.g. for
the definition of the vertical decoupling expansion, for the smearing of the low
momentum fields, the use of smoothed or sharp characteristic functions for the
lattice cubes, the shapes of the slicing cutoffs, etc.... These technicalities are
important but they may obscure the simple mechanism at work; so we suggest that
the reader stops for a while to make sure that he has a good intuitive understanding
of this mechanism at least in the two-scale case, before going on.

C) Proof of Theorem III.2.1

We prove Theorem III.2.1 in a slightly different context, where domination
is easier. We write the initial gaussian measure dyp as e_efa“w%du’ with € a
small constant (we will see that ¢ = g'/?
convenient choice). The slicing and horizontal cluster expansion is performed with

, where g is the bare ¢* constant, is a

respect to du/, and the small quadratic piece is treated as an interaction, using
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formulas (II1.2.7-9-11)*. The slicing is such that the sliced propagator C* has
scaled exponential decrease (II.1.7) or scaled power law decrease

Ci(z,y)| < ¢ M¥P(1+ Mz —y|)~" (I11.2.25)

with r as large as will be necessary. We assume (II1.2.25); the case of exponential
decrease is easier.

In order to perform the functional integral according to the principle (II1.2.16),
we should give now the precise rules to determine in the general case what is a low
and a high momentum field; this includes, as sketched in the above, the smearing
operation and a t-dependence reconstruction for the low momentum fields in order
to rewrite them in a form directly suited for domination. We explain these steps
now in full detail.

We define first the raw high and low momentum fields. Then we prepare the
raw low momentum fields for domination, i.e. we separate them into true low
momentum fields suited for domination plus some new high momentum fields. At
the end of this process we have the true or final low and high momentum fields to
which formula (II1.2.16) is applied.

A field which is not in A, the exponential of the interaction, must have been
derived from it by a cluster expansion step or by a tA derivation at some scale 1.
In the first case it is hooked to a vertex to which an explicit propagator C* of the
t-th cluster expansion is also hooked; in the second case, it is hooked to a vertex
in A which has both fields of indices smaller than ¢ — 1 and bigger than i. By
definition such a field derived at stage ¢ is either a low momentum field ¢;_1, i.e.
a sum over frequencies ¢ — 1, ¢ — 2 etc... which we do not develop, or it is a high
momentum field, which we can in contrast decompose systematically into a sum
over some frequencies j > i of sliced fields ¢/. We distinguish between the index j
of such a high momentum field and the index i < j (called its production index)
of the expansion which produced it.

To be produced at scale ¢ is the end of the story for a high momentum field, but
it is not for a raw low momentum field ¢;_1, because these ones can be rederived
later. When derived by a cluster expansion of scale j < ¢, a field ¢;_; simply
disappears into the production of a new explicit propagator €7 and we need not
worry about it any longer. But since the field ¢;_1 becomes really a function
¢i—1(t) according to (II.2.3), it can be also derived by vertical ¢ expansions of
scale j < 4. Such a derivation selects the piece ¢;_;(t) (and destroys the higher
frequencies, with smaller indices). The last index j of this type is then called the
production index of the low momentum field, and the cube A € D’ to which it
belongs is called its production cube. We can essentially forget about the initial ¢.

Strongly connected domains are useful to describe in a precise way the range
of frequencies of a high or low momentum field produced by some expansion step.

* Strictly speaking this changes slightly the definition of what is the convergent
piece of the phase space expansion in Theorem II1.2.1. This is a minor point
since this definition depends also of the arbitrary shape of the slicing cutoffs,
and Theorem II1.2.1 (which in fact holds in a rather general context) was only
intended as a pedagogical introduction to the study of the convergence of phase
space expansions.
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More precisely a low momentum field with production cube A € D7 is equal either
to Y 7_ Z(A) [i<m<; tm®” or to Zi;}m) [i<m<; tm®”®, where [(A) is the index
of the largest cube (coresponding to lowest frequency) in the strongly connected
domain to which A belongs, depending to whether the corresponding vertex was
produced by a horizontal or vertical cluster expansion step and whether the low
momentum field was rederived later (in which case we have always the first form).
Since t; < 1, we can bound systematically each such field by the first case (putting
if necessary the additional ¢; in P).

A high momentum field with production cube A € DJ and position z is equal

to a sum
h(z)
Z || R (I11.2.26)
k=j k<m<h(z)

where h(z) is the index of the smallest cube (hence with highest scale) containing
x in the strongly connected domain to which A belongs (see Fig.I11.2.2).

Let us prepare the low momentumm fields for domination. We can imme-
diately perform the reconstruction of the dependence in the t parameters, which
generalizes (I11.2.22). We write systematically such a field with production index
j as:

j-1 j
> I twet= > 11 two"+1-1t) Z [T twe® —¢
k=I(A) k<m<j k=I(A) k<m<j k=I(A) k<m<j
(I11.2.27)
The first two fields are considered as true low momentum fields with production
index j, production cube A € D; and range [j,1]. The last field ¢’ is considered
a high momentum field with production index j.
The fields with derivatives, such as those created by derivations of the inter-
action term ¢~ (/2 [ 2 69u¢
proviso that the derivatives are performed before the ¢-dependence (see (I11.2.7)).

Finally we have to perform a smearing operation so that low momentum

are treated exactly in the same way, with again the

fields can be bounded directly by the interaction A. The formulas are analogues
o (III.2.19-20), but (as announced) we push them one step further. We replace
(II1.2.19) by:

1 1
o) = (3] /A oy)dy + /A (& — 90, b(y)dy] + 56(x) (IT1.2.28)

6¢(x)

1 ! p ,
(a7 /A dy/o dt(1 — 1) (& — y)*(x — y)" 0,00 d(z + t(y — x)) (I1L2.29)

Similarly we write:

9,0() / 0,6(y)dy + 69,6(x) (I11.2.30)
80,0() = (5] /dy/ A — )7 0,800 + 1y — 1) (I1.2.31)

We apply these formulas to every low momentum field with A the production
cube of the low momentum field. In this way we replace each low momentum
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field by one or two corresponding fields smeared in a cube of the production scale
J, plus a fluctuation field which has at least two derivatives acting on it. This
fluctuation field is considered a high momentum field of production index j.

The definition of high and low momentum fields is now completed and we can
apply formula (II1.2.16). It remains to check that the corresponding bounds are
sufficient for convergence. Let us check first the bound for smeared low momen-
tum fields produced in A € D;. The fields of type ¢ produced by (II1.2.28) are
dominated using the quartic piece of A. By (I11.2.27) they may be of two types:

) j
(m)[/Ady > I tme” (I11.2.32)

k=1(A) k<m<j

or

1 = .
(m)/Ady(l—tj) S I tme (I11.2.33)

k=I(A) k<m<j

We apply the Hélder inequality (II1.2.23-24) to these fields. Now by definition of
I(A) tj_1,..., tya) are not put to 0 by the vertical expansion. Hence the exponential
of the interaction contains the required pieces to bound these fields (this is true no
matter whether ¢; itself is 0 or not). Therefore we can conclude, using the bound
(z'/*)me=® < (m/4)!. The overall scale factor associated to such a low momentum
field with production index j is g~ '/4M7 (or g~ Y/AMI=1 which is the same up to
a constant). In particular the power counting factor, M ~7, is the same (up to a
constant) as for a ¢/~! field in perturbation theory; and the local factorial (m/4)!
is better than the local factorial (m/2)! that gaussian integration of such fields
¢;—1 would have produced.

Let us discuss now the almost similar case of smeared fields of type d,¢ pro-
duced by (I11.2.28) or (II1.2.30). They are dominated using a Schwarz inequality

similar to (I11.2.23-24) with 4 replaced by 2; then the factor e~ (/) [ 0" o0 1 4
contains the pieces required to bound these fields, using (y/x)™e™" < (m/2)!. It
remains to check that the couplings are all right. Domination in such a way pro-
duces a factor e~ 1/2M*+2i=2 for such a field. But e '/2 = g—/*. When some 00
legs hooked to an ordinary vertex of the ¢* type are dominated in this way, there
are at most three of them, and domination consumes ¢~>/4; it remains a small fac-
tor g'/* for the vertex. Similarly when the vertex is of the 9"¢d,¢ type, there is

at most one leg dominated in this way, which consumes e~ '/2

, hence again a small
factor ¢'/2 = g'/* remains for the vertex (this explains our choice of ¢ = g1/2).
We have to check also that the fluctuation fields produced at scale j give again
the same factors than a field ¢/~! with gaussian integration. This is because such
a field of frequency k < j, apart from inessential factors, has two derivatives and
two factors |z — y| of explicit size M =2/, When integrated with the gaussian (we
may use a Schwarz inequality to separate these fields from the rest), they gives
a scale factor M3 and a local factorial (m(A)/2)! where m(A) is the number of
such fields per square of D¥. The total scale factor for these fields is therefore
M?3=2 hence MI~'M~30U=F) (up to a constant). A factor L~=Y/2 = M—20—Fk)
per field is what is needed to transform the local factorials at scale k v/ma! into
the product of local factorials at scale j (or j — 1) HA,CAyA,EDj Vmar!, because
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S ma!/[[mar! = L7™2. The last factor M~U=*) per field allows to sum
Em’A:mA
over k at fixed j. Hence again the effect on the estimates is the same as if these
fields were fields ¢/~ 1.

The conclusion is that the net effect of the domination of low momentum
fields ¢ or d¢ is therefore bounded (up to a constant per field) by replacing first
each such field with production index j and production cube A by a field ¢/~! or
¢~ localized in A, next replacing each coupling constant of each vertex by ¢g'/4
instead of g or € and finally performing gaussian integration over all fields.

We show now that the sum of the corresponding contributions in the conver-
gent case (and for a fixed set of at least six external fields) is a convergent series

1/4 is small.

provided g
It remains to explain the effect of integrating the well localized high momen-
tum fields with the gaussian measure, according to (II1.2.16).
Given a convergent O-polymer containing the external variables, we have

bounded its amplitude by a big sum:

22220 > Arciruvw

T G P p V

This sum has to be performed over:

- the tree shapes T which give the inclusion structure of the i-subpolymers
(called G%, k = 1,...,1(i) by analogy with part II),

- the subpolymers G = G%; each G% is by definition an ¢ polymer made of
connected cubes of D? U D*t1... U D”; remark that its support at scale i,
Gi N D?, called also S,i, may be empty; this is analogous to the possibility in
section II that subgraphs G}, could have no line at scale 1,

- the procedures P which connect together these polymers; this includes whether
s or t derivatives hook to already derived fields or create new vertices (hook
to the exponential),

- the momentum attributions p of scales to the high momentum fields (recall
that these fields are decomposed over their allowed range into slice fields).
This sum must be performed before the sum over P, otherwise we do not
know exactly which vertices and fields have been created by the expansion,

- the positions V' of the vertices created by the expansion,

- the Wick contractions W due to gaussian integration applied to all fields (after
the low momentum fields with production index j have been replaced by ¢/ 1
fields, as explained above).

Let us consider a square A in D?, and a vertex v. A is called the localization
cube of v if the position of v is in A and the highest field hooked to v has scale
i. Note that if A’ is the production cube of v we may have A # A’ but A is
necessarily in the strongly connected domain of A’. We should call n(A) the
number of vertices with localization cube A. We call f(A) the number of fields of
scale ¢ whose position is in A.

Then we perform the Wick contractions. At each scale ¢, the integration
over the fields ¢’ with du’(s) factorizes into subintegrations associated to each G%
(more precisely each Si), hence does not modify the definition of the polymers.
Using some fraction of the scaled decay of the propagator as in Lemma I1.6.2 or
Lemma II1.1.2, we transform the corresponding sum over Wick contractions into
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local factorials. Finally we integrate over the positions of each vertex. We find
that the contribution AT,G’,P,M = ZV ZW AT,G,P,;,L,V,W is bounded by:
- a constant per field (or per vertex, which is the same),
a factor g~ 1/* per vertex,
a factor M per field ¢ or (by (II1.2.25)) per half propagator C°,
a factor M ~% for each vertex localized in a cube of scale 4, due to the corre-

sponding volume of integration,

a factor /f(A)! per cube A by the local factorial principle,

a scaled decrease (see (II1.2.25)) for each explicit propagator C? of the i-th
horizontal cluster expansion.

Let us call N(G%) the number of external legs of G% and I(G%) the set of
explicit propagators 1 of scale i in G%; such a propagator joins two cubes A(l) and

A’(1) of Si. The bound may be summarized as:

|Ar.c.pul < H \/m(c.g—l/zl)n(A) HM_N(GZ)
A ik

[T [+ 27 - dist(A@), A1) (111.2.34)
lel(GY)

Let us show now that we can perform the sum over momentum attributions
and compatible procedures and get rid of the local factorials 1/ f(A)! using a piece
of the decrease in HM_N(G}?. For this purpose it is convenient to define r(v),
the range of a vertex, as its length in the vertical direction, hence the difference
between its localization scale and the scale of the lowest field attached to it.

Since our polymers are convergent, N(G}) > 5, hence N(G}, > 4 + N(Gi /5
and we can replace the power counting factor [ M ~N(&k) in (I11.2.34) by [ M —*
times [[ M —7()/5  which gives an exponential decay in the vertical direction for
each Vé]rtex. Holding the localization scale of each vertex fixed, we can perform
the sum over the scale of each leg attached to this vertex, hence over momentum
attributions with a third of this vertical decay (at the cost of a constant per vertex,
see section II.1). Then let us control the sum over procedures. For each s or ¢
derivative we may choose by a factor 2 whether it derives the exponential or hooks
to a field already produced. In the second case we have a factor f(A) to pay to
choose this field. In this way we reach a bound of the same type than (I11.2.34)
but with /fa! replaced by f(A!)?/2 (this is a very crude estimate). It remains to
beat such local factorials by the decrease of the cluster propagators.

Let us call f7(A) the number of fields ¢° localized in A € D with production
index j. By our rule for dominatiqn we have j < i+1, hence f(A) = Zj§i+1 fI(A).
We define also fi(A) = 3", f/(A) (hence fi41(A) = f(A)). Furthermore, for
A" € D’ and j < i

> F(A) <15+ 3d(A) (I11.2.35)
ACA!

where d(A) is the coordination number of A in the i-th cluster expansion (the
analogue of d; in section III.1). This is because the tA expansion produces at
most 15 high momentum fields and each horizontal cluster expansion step which
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links A to an other cube creates at most 3 high momentum fields. This is also
true for low momentum fields, hence we have also:

FHA) < > (15+3d(A) (111.2.36)
A’EAi+1,A’CA

Applying repeatedly the binomial argument, then applying (II1.2.36) with the
remark that there are M? cubes of A**! in A, we can write
i+1 _ _
(A< H ij(A)fj(A)g < [cf(A)] 9% (i=3) 17 (A)
j=0

1T (AN TT A a) (I11.2.37)
ATeATI A'CA j=0
where ¢ is some (M-dependent) large constant.
By (II1.2.35) we have, , for A’ € D7 and j < i:

[T Fa) < eZacar ™ [gan? (I11.2.38)
ACA’

hence, combining (I11.2.37) and (II11.2.38), if f = >  f(A) is the total number
AeD
of the fields (and ¢’ = ¢?) we get:

[T sy <) TTlaye [ IT 2% (111.2.39)

AeD AeD 1 AeD?

Provided M is chosen large enough, the factor []; [Tacpi 9% =0 (1=3) 17 (A) g
beaten by an other third of our vertical decay [[, M ~"(")/15; and the factor
[Taen[d(A)!]® is beaten by the horizontal decay of the propagators by lemma
IT1.1.3. (We do not look for optimal bounds; in particular we may avoid to take M
large by a more careful analysis, left to the reader). Finally f, the total number
of fields, is at most four times n, the total number of vertices, and f is certainly
larger than |G, the total number of cubes in the last polymer G°. Therefore for
any large constant K, choosing g small enough we have

Kfg—n/t < g=IGI/8 (I11.2.40)

We have still at our disposal a piece of the horizontal decay of the propagators
and the last third of our vertical decay. Hence at this stage we have reached the

bound on Ay g = ZR“ AT pu

[Apa| < g IV M~ T L+ Midist(AQ), A1) /A [ /2
i,k lel(GY) v

(IT1.2.41)

We have to perform finally the sum over 7" and G of A7 . At this stage it is

convenient to introduce G which is obtained from G by “filling the vertical holes”:

a cube A belongs to G if there are two cubes A’ and A” in G with A’ C A C A”.

Similarly we define G* as the set of cubes of G with scales > i, and G% as the
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corresponding maximal connected components (see Fig.II11.2.4). The advantage
is that the set of cubes of G}; N D?, called S,i, is never empty, in contrast with
Sk. With a factor 21¢l we can find G from G. We may use our last piece of
vertical decay M ~"()/15 to obtain a small factor for each cube in G but not in G;
this factor will be as small as necessary provided M is chosen large enough. In
particular we may use half of this small factor to perform the sum over G at fixed
G and still retain a small factor per cube of G.

Hence there is a constant €, as small as we want provided M is taken large
enough and g small enough (in this order), such that our bound contains a small
constant € per cube of G. The final sum may be written >, ~ Ar & To evaluate
the bound that we have at this stage for A &, there is still a small difficulty in the
way one should describe the horizontal decrease still available. With the power law
decrease (II1.2.25) the “replica trick” (I1.1.22) is no longer possible. Furthermore
the cluster expansion at stage ¢ does not exactly connects together the cubes of
S¢, but only some subsets Si ~ such that Umg,i’m = Si. The various S,i’m are

k,m
connected together through connections of scale strictly higher than i. If we call

T,;m the tree built by the i-th cluster expansion between the cubes of Sli’m, and
define the corresponding scaled tree decay:
wm= I @+ M- dist(A, Q)7 (I11.2.42)

(A,ANeTy

we have the bound (to be compared to the left hand side of (II1.1.28)):

Argl < O[S > S 1 dn
i,k gi;EmtE.g‘f {gli,m}5um‘§li,m:‘§li Té,mtree in gi,m t,k,m
(I11.2.43)
where Ext € S? recalls that the cubes of G at the last scale have to contain
the external variables which break the last translation invariance and provide
anchoring to the whole construction.

We can picture the connections of the Sli’m by the graph I' of Fig.III.2.5.
Each value of (i, k, m) is a node at height i. It is no longer a tree, but it has to be
connected. From I' we can recover T by looking at the connected components of
I' above any given height ¢. In I' there is a node at level 0 which contains external
variables and which we choose as the root of the construction. Then a partial
ordering relation on the nodes of I' is defined in terms of the minimal number of
lines of I' to reach the root from the node.

We can delete some lines of I' to form a tree 7" such that for each node the
number of steps in 7" to reach the root is this minimal number of steps in I'. Of
course T can be recovered from 7" rather than from I', so we divide our sum over T’
into smaller sums indexed by T7”. Then we organize the sum over each g,im in the
order given by the tree T”, in a way which is very similar to the Mayer expansion
in section IIT.1. We start from the nodes which are farthest from the root in 7"
and integrate inductively over the corresponding S,im. For each node (i, k, m),
using the corresponding factor di’m, we can perform the sum over the trees T,f;m
ey
and which overlaps with the ancestor of (i, k,m) in T’. By the scaled analogue

and over the position of all the cubes of S save one, A};}m which is kept fixed,
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of Lemma III.1.4, this summation results simply in a constant to the power the
number of cubes in S”,im.

We have finally to give a rule for the choice of Ai:?m. At each node we may
choose by a factor 2 whether the tree 7" goes up or down in phase space; this
factor will be beaten provided € in (II1.2.43) is small enough. If the ancestor is
Slit;%, with scale i + 1 (i.e. one goes up in the diagram), it is enough to know
the cube of S,it}n, with which A?;,m overlaps, because this cube fixes Ai;’m. If the
ancestor is 5',2,_7;1, (i.e. one goes down in phase space) one has to choose the cube

of 5',@,_7171, which contains A’ but it is not enough; one has also to pay a factor

k,m>
M*, the number of cubes of D? in a cube of D*~!. But the corresponding factors
M* compensate exactly the factors M ~* in (II1.2.43), because for each value of
(i, k) there is a single value of m such that one goes down at node (i, k,m) in T".

Once this is realized, the choice of the cube in the ancestor is similar to the
problem solved in section III.1 for the single scale Mayer expansion (equations
(III.1.39-43)). If we have a coordination number d; at node j in 7", this leads
to a factor |S}, [%~
the summations are made independent over the n nodes of the tree; by Cayley’s
theorem, 1/n!is changed into [T 1/(d;—1)!. We can bound . 1S, B/ (dj—1)!

by elgi,mh which itself is bounded using the small constant per cube of G in
(IT1.2.43). Hence the full sum is bounded by a convergent geometric series if M is
large enough and ¢ is small enough.

and there is an overcounting symmetry factor (n!)=! if

Let us also remark that we could also use the mechanism of convergence
of the phase space cluster expansion Theorem II1.2.1 as the starting point for a
global Mayer expansion in which we could quotient out the “convergent partition
function” defined as the sum over vacuum polymers which have no divergent sub-
polymers at any scale. But it is time now to come to more realistic situations
involving renormalization.
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II1.3. The effective phase space expansion and infrared ¢}
A. Model and results

In this section we add renormalization to the phase space expansion (more
precisely useful renormalization), to obtain finally a tool sufficiently powerful for
a non-perturbative investigation of some properties of ¢f. In particular we give
the results on the construction of the critical ¢} with fixed ultra-violet cutoff, or
infrared ¢j, based on infrared asymptotic freedom [FMRS5], and we include also
some corresponding triviality results on ultraviolet ¢j.

In the case of infrared ¢} we start with a bare theory of type (I.3.1) in a finite
box A with a fixed ultraviolet cutoff and a mass counterterm:

dv(g) = 271 e WD [ g g (ITL3.1)

where duc(¢) is a gaussian measure with fixed ultraviolet cutoff. It is convenient
to number the scales in this infrared problem in an order opposite to the ultraviolet
one, so that the ultraviolet or bare scale has now index 0, and lower and lower
momenta have higher and higher indices; it is now the last infrared scale which
is called p, as shown in Fig.II[.3.1. Remark that there is now a “ceiling” rather
than a “floor” in this picture but it would be wrong to consider that the basic
picture (Fig.I1.1.2) of phase space has been turned upside down; analysis still
proceeds from high to low momenta and the definition of almost-local objects is
not changed. In summary shifting from an ultraviolet to an infrared problem is
like changing the boundary conditions in phase space, but not the structure of the
expansion.

The fixed ultra violet cutoff could be of any type, e.g. lattice, exponential or
Pauli-Villars type. For a theory with real bare coupling A any slicing may be used,
in particular our favorite exponential slicing (I1.1.3) (with the necessary rescaling
to adapt it to an infrared problem). But in order to get the Borel summability
results we need to construct the theory with A in the complex disk of Fig.[.5.1, and
it is convenient to use a slicing rule with good momentum conserving properties.
This eliminates vertices with one high momentum and three low momentum legs
whose “domination” is impossible for a small imaginary coupling at the border of
the disk (see below). Therefore we choose to use from the beginning™® a cutoff and
a slicing rule which in momentum space is smooth but with compact support (this
is optimal from the point of view of momentum conservation). We choose a fixed
C*° function with compact support n with n(z) = 1 if |z| < 1 and n(x) = O if
|z| > 2, and use as cutoff:

1 ip(a—y) 1(P°)
Clr—y) = ip(e—y) D22 gt I11.3.2
(@ =1) = gy [ e Lty (I1L3.2)
This leads to the natural slicing rule with good momentum conserving properties:
00 i(2
c=c, c= / e”’(x—y)%d‘lp (IT1.3.3)
i=0

* In [FMRS5] a slicing rule suited for a cluster expansion of the “pair of cubes”
type (but not good for momentum conservation) is introduced first, then for Borel
summability one turns to an other slicing rule with good momentum conservation;
we fear that this may be the source of some confusion.
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where g = 0, n* = g;—ni_1, and 1;(t) = n(tM?*), so that C* vanishes if |p| < M.
This last point is useful for the Borel summability results. However remark that
such momentum conserving slicings can be applied to any initial cutoff, at the
price of formulas less elegant than (II1.3.3); so the method is really general, not
limited to cutoffs like (IT1.3.2). Since 7 is smooth, the sliced covariance C? satisfies
the bound (II1.2.25) for any large fixed r.

m? is the mass counterterm, which is chosen to fix the theory at the crit-
ical point, i.e. to lead to a renormalized massless theory; this means that the
asymptotic behavior of the two point function will not be exponential decay as in

2 is only meant as a generic

a massive theory, but rather a power-law decay. m
name for such a parameter, and will turn out to be negative in this problem, so
that the associated m is purely imaginary.

The main result of [FMRS5] is:

Theorem II1.3.1 Existence of infrared ¢}

For sufficiently small coupling A > 0 the Schwinger functions of infrared ¢} exist.
Their large distance behavior is gaussian up to logarithmic corrections. They are
Borel summable functions of A for A € Cr (Cg being the disk of Fig.I.5.1, and R
a sufficiently large constant).

Similar results (apart from Borel summability) were obtained in [GK2-3].
Some explicit examples of what is meant by gaussian asymptotic behavior
were proven in [FMRS5], in particular:

1+ 0(A
S%(z,y) = |x+—735|2)[1 + C1(A, |z —y|)] (IT1.3.4)
Cy
Ci(\, |z — < I11.3.5
4
154 (21, .oy q)| < / d'y [ 5%, ) Cs (I11.3.6)

bl 1+ 1911'<1£§410g(1 + | — x5])

More precise or more general results involving general N-point Schwinger

functions could also be derived from the expansion by explicit computation of the
leading terms in the effective phase space expansion.

B. Overview

The construction that we give in this chapter differs in a substantial way of
the one of [FMRS5]; we have tried to incorporate many improvements and hope
that it will be simpler to assimilate. We thank Jacques Magnen for collaboration
on these improvements. Here is a list of the main differences:

-a) A single cutoff and slicing (II1.3.2-3) is used; tree cluster expansions are in-
troduced from the beginning.

-b) Sharp characteristic functions of cubes are used, so that problems of overlap,
corridors, etc... no longer occur.

-¢) The smearing of low momentum fields and the domination argument is sim-
pler.

-d) We abandon the 3-rd order cluster expansion and modified Mayer expansion
which were introduced in [FMRS5] to perform directly full mass renormaliza-
tion, and return to the simpler (although less elegant) version in which the
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2 is computed by a convergent sequence of approximations,

rather than by a global formula. This is discussed again below.

counterterm m

-e) The Mayer expansions which allow renormalization cancellations to work are
completely explicit.

-f) The proof of Borel summability is made simpler by using momentum conser-
vation at the beginning to eliminate the corresponding troublesome piece of
interaction; in [FMRS5] the rules of the expansion itself were modified to re-
store momentum conservation within the expansion, which is somewhat more
complicated.

The improvements b and ¢ are possible because we decide to keep a piece
of our initial gaussian in the form of an interaction; this will be helpful later for
domination purposes. Hence rather than formula (II1.3.1), our starting point is:

du(g) = 270+ NI [ ot om D [ 6 () (IIL3.7)

Strictly speaking this would not build the theory with bare wave function constant
1, but 14 €. To maintain (I11.3.4) (with O(\) instead of O(¢)...) we have therefore
to correct slightly the propagator into:

c=Y c' ci= / ivtr=n) 1), (IT.3.8)
’ (1= e)p? a

The constant € has to be small, so as to lead to a convergent cluster expansion,
but it should not be too small because it will be used for domination. A good
choice is € = A1/2,

The basic idea of the effective phase space expansion is to mimick the effective
perturbation theory of Sect.Il.4 by renormalizing in the phase space expansion
of the preceding section the almost local polymers with two and four external
fields. We give now an informal introduction to this idea, focusing first on the
coupling constant renormalization. Renormalization, like in perturbation theory,
is performed by subtracting at 0 external momenta; again in phase space this
corresponds to hooking all the external fields of a four point polymer to a single
point to get the corresponding counterterm. But how is it possible to create
such counterterms? This is equivalent to a modification of the value of the bare
coupling constant. Is this constant not definitely fixed in (IIL.3.7)7 These are
natural questions. The correct answer is that there is of couse really no change
in the coupling constant, simply it is essential, in order to prove convergence,
that we combine together different terms that the expansion produces in order
to effectuate crucial cancellations. The rules for these cancellations lead precisely
again to the definition of effective constants: hence these effective constants may
be considered either as the deep solution to the problem or simply as intermediate
tools to exhibit the convergence hidden in the bare formulas.

Let us give an example based on a simplified model with only two slices, two
lattices D? and D! and two fields ¢° (high momentum) and ¢; (low momentum,
by our infrared conventions). Remember that almost local subpolymers of D°
with two or four low momentum fields in slice 1 must be supported by cubes A
of DY with interpolating parameters ta set to 0. But after all the interpolating
formula (IT1.2.1) is partly arbitrary; what matters is that at ¢ = 1 the theory
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coincides with the initial one (IIL.3.7) but nothing requires that at ¢ = 0 both
decoupled interactions have the same coupling constants. Hence the introduction
of the running coupling constant is in fact extremely easy and natural: we replace
the interpolation formula (II1.2.1) by:

/—Ao(qso + )t — A (1 —tY)(d)? (IT1.3.9)

where \g = A and A1 = Ag + 6, 6\ being the counterterm, equal to minus the 0
momentum value of the (normalized, connected) four point function corresponding
to a theory with only the 0 momentum slice and bare coupling A. Let us sketch
how interpolation (II1.3.9) generates now renormalized almost local configurations.
Four ¢ derivations in the term I*) in (IT1.2.7) may now apply to the new term
t*6X(¢2)?; hence for each cube A with tA = 0 one counterterm 6\ localized in A
is generated. This counterterm should in some sense renormalize the four point
polymers produced by the expansion whose “support” contains A. But how is this
possible? There is indeed a difficulty: the counterterm is a universal object (the
0 momentum value of a four point function), and there cannot be any hardcore
constraints in its definition. The four point polymers actually created by the
expansion have in contrast hardcore constraints with all other polymers produced.
To remove hardcore constraints is what the Mayer expansion does. Hence we
understand the need, announced in the previous section, to sandwich the cluster
and vertical expansions at each scale with a Mayer expansion. This expansion,
discussed in subsection D, has to factorize the vacuum polymers (this corresponds
to normalization), but it has also to free the two and four point functions from
hardcore interactions (except for their external cubes, see below).

How does the renormalization transfer convergence to improve the power
counting? Of course by a mechanism very similar to the perturbative example
discussed in the beginning of Sect.I.2. The main difference is that gradients cre-
ated by the renormalization subtraction can no longer apply to propagators but
must apply to fields: this is in a sense more natural (see the clumsy distinction
between the two ends of a propagator in sections I1.2-3). For example a four point

polymer
/ A1, 79, 73, 70) (1) D2 ) (3) b :4) (ITL.3.10)
is renormalized by a counterterm
/A(xl,xz,xg,x4)¢(x1)4 (IT1.3.11)
by writing:
[ Al s w066 — o))
= /A(flfla332793375E4)¢(5E1)[Z(¢($1))i_2(¢($i) — ¢(x1)) H ¢(x;)] (11L3.12)

The difference of two fields at different arguments, using a Taylor formula, is similar
to a derived field 0,,¢; when this object is evaluated by gaussian integration it leads
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to the same effect than a gradient on a propagator, hence to the same transfer of
convergence discussed at length in sections I1.2-3.

In perturbation theory we discovered that mass renormalization is quite dif-
ferent from coupling constant renormalization, in a way being simpler: it does
not contain overlapping divergences, hence does not lead to sums over forests, nor
does it lead to renormalons effects, provided we work at the level of one-particle
irreducible objects. Hence in perturbation theory there is little incentive to pass
to the effective expansion as far as mass renormalization is concerned; in fact we
used directly full mass renormalization, e. g. in the construction of planar theories
(section II.5). Here again perturbation theory is a good guide for what happens
in constructive theory, since it turns out that direct full mass renormalization can
be performed in the constructive ¢} problem as well [FMRS5]. We think that it is
conceptually interesting to have such a global formula for the mass counterterm.
Nevertheless the technical price to pay is heavy, so that in fact this global formula
is not very transparent. One has to perform the analysis in phase space at the level
of one particle irreducible objects. This requires “3-rd order” cluster expansions
and a rather complicated particular Mayer expansion on the chains of one-particle
irreducible two point subgraphs, as mentioned in section III.1. In a sense one can
argue that the limiting process has been simply hidden in this complicated Mayer
expansion.

Therefore here we decided to use a fixed-point argument, less elegant but
technically simpler. We construct a sequence of theories and of mass counterterms
such that the renormalized mass is closer and closer to 0, and pass to the limit.

In practice we can construct the theory with renormalized mass m for any
m > 0; this is rather trivial for m > 0 (a theory with both infrared and ultraviolet
cutoffs), but what is not trivial is that the case m = 0 (the infrared theory) can be
treated so that all convergence estimates will be uniform in m near m = 0 (hence
the approach to the critical point can be studied).

The construction at m = 0 relies in an essential way on the fact that the
recursion relation Ao = Ay + (6\); iterates into A;11 = A; + (6A);, where (6X); =
—B; A2+ higher order terms, with 3; > 0 and lim; .., 3; = 3 > 0 (as in section
I1.5, 3 is the scale invariant part of the bubble graph). Hence the behavior of \; is
Ai ﬁ; the theory is infrared asymptotically free. The wave function constant
flow is bounded and small for small A, like in the planar theory studied in section
I1.5, because Y A? is finite (and O()\)).

Finally let us sketch the difficulties associated with the proof of Borel summa-
bility. We want our expansion to work also in the case of a complex bare coupling
constant A in the disk Cr = {\,ReA™! > R~!} of Fig.1.5.1, as should be the case
to apply Theorem 1.5.1. A new difficulty arises with domination®, because we can
use only the decrease of the real part of the interaction. On the border of the disk

Cr near A = 0 we have Re\ ~ % (with in fact [ImA| < VR -Rel for A € Cg).

* This difficulty is specific of ¢; Borel summability for superrenormalizable
theories ([EMS], [GGS], [MS2]) is somewhat simpler, because the coupling constant
is dimensioned so that one can trade analyticity in the coupling constant against
analyticity in the mass, which is easier to obtain. This is no longer possible for
¢3. Also in contrast with the superrenormalizable case, it does not seem easy to
improve over the Nevanlinna-Sokal domain of analyticity of Fig.1.5.1.
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Hence we can dominate at most two low momentum fields hooked to an imaginary
vertex and still keep a small factor. We may for instance use the bound:

Im( / g1)1/2e7 RN [0 < /R (IIL.3.13)

for some constant c. But we can no longer dominate three low momentum fields
hooked to an imaginary vertex, like in the worst case situation of Fig.I11.2.1. Fortu-
nately this type of vertices violates momentum conservation, as remarked already.
With our slicing rule (III.3.3) we can even claim that a vertex fIR‘* 1 P2 P34,
with 17 < 19 <13 < 14 is 0 with probability one with respect to the gaussian mea-
sure du(p) = [, du(¢?) as soon as is > i1 + 1. Indeed with probability one the
fields ¢ have their support in Fourier space out of the region where C? is 0, hence
they are supported by momenta p with M 20+ < p2 < 20/~2 and there is
no way that three momenta lower than v/2M ~"*2 add up to a momentum larger
than M~%~1 (provided M > 3v/2, which we assume now). It would seem that
we can therefore identify the theory with these vertices to a theory in which they
have been suppressed. This is not exactly so because we cannot define functional
integrals directly in the infinite volume limit. There is no obvious solution to
this subtlety. After comparing various possibilities it seems to us that a reason-
ably simple solution is to construct the theory in which the imaginary part of the
corresponding bare vertices is suppressed, but not the real part (to suppress also
the real part does not seem possible, because the corresponding interaction would
no longer be positive). The domination problem therefore never occurs, but the
corresponding sequence of approximations to the infrared limit are not analytic
in A, so that at the end of the construction one has to give a separate argument
to conclude that the limit is analytic in A. This is however almost obvious: one
can check the Cauchy-Riemann equation 8% = 0. Indeed the Cauchy Riemann
operator creates at least one vertex with coefficient (Re)) of the non momentum
conserving type, and such objects vanish in the thermodynamic limit A — IR*.
Other alternative solutions would be to keep the unwanted vertices but to use a
smoothed characteristic function for our volume cutoff A. The unwanted vertices
do not completely disappear but they become tiny boundary effects linked to JA.
However one still has to check that they are sufficiently tiny to compensate for
the factorials generated by the failure, in their case, of the ordinary domination
argument. This is of course true, but painful. Still more complicated perhaps is
the solution of [FMRS5]: to modify the expansion rules so as to partly restore
translation invariance when such vertices are produced.

In conclusion the bare theory which is our true starting point, when A is
complex is not (II1.3.7), but:

dl/(QS) _ Z—l‘e—Re)\ fA ¢t —ImA fA Prrc—(e/2) fA Dot p—(m?/2) fA ¢2d,UJC(¢) (111314)

where by definition qﬁjlwc (Momentum Conserving) does not contain the momen-
tum violating pieces:

Suc = 0" — iy i Sy =4 D' (IT1.3.15)
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C) The cluster and vertical expansion

Let us turn now to the details of the expansion. We introduce the orthogo-
nal decomposition of fields ¢ = > ¢’ associated to the slicing (IT1.3.8), and the
corresponding lattice of cubes D? of side size M*. Recall that now ¢; = Jp.:i .

The expansion is performed scale after scale. At scale ¢ the first part of the
expansion is an ordinary cluster expansion among the cubes of D? as described in
Section III.1, with respect to the covariance C*.

The second piece of the expansion is the vertical decoupling expansion, de-
signed to decouple the fields of frequency ¢ from the fields with lower frequencies.
As in (II1.2.7) an operator is applied which computes a fifth order Taylor formula
whithin each cube of D? in an interpolating parameter tA. Since we have intro-
duced a different interaction for the imaginary and real part of A, we should give
the corresponding interpolation rules in these vertical decoupling parameters ta.
We introduce the natural generalization of (II1.3.15):

p—2
(@) e = (@) = (4i@)irv 5 (i) hv =4 [ ]] thld! (9542(1))°
j=t i<k<j
(I11.3.16)
where ¢;(t) was defined in (II1.2.3); we use again the convention that each
stands for ta, A being the cube of DF to which x belongs.

The formula which generalizes (I11.2.4) and (II1.3.9) is:

p
Mgt () = Y (1=t{_ 1) [Rei(e (1) +TmAs (6i(1) 3+ Im(6Ai—1) (6i(6)) v ] li=1 (@)

= (IT1.3.17)
with 6A;_1 = A; — A\;_1. This may seem complicated, but remark that for real A
it reduces to formula (II1.2.4). Remark also that we tolerate momentum violating
interactions for the counterterms d\;_; because these ones will be dominated easily
(they are of order A\? rather than \) and because otherwise some configurations in
the expansion would not be properly renormalized; to show that they are in fact
harmless (because they violate momentum conservation) would require a separate
argument.

When all parameters ¢t are set to 1, (II1.3.16) coincides with the quartic in-
teraction in (I11.3.14). The effective parameters \; = X\;_1 + 6A;_1 are defined
inductively; 6A; will be defined below as the 0 momentum value of the almost
local 4 point configurations at scale k; by definition Ay = A.

Finally we have to give a rule for the interpolation of the quadratic pieces
considered as interaction in (II1.3.14) namely m? [ ¢? and € [ 9,00 ¢. We may or
may not perform the wave function renormalization (which turns out to be finite).
In order to have always exponentially convergent sums, we choose to perform it.
Hence we use the interpolations generalizing (I11.2.8-9):

p

Y (1=t ) (m®)i(¢i(1))* () (IT1.3.18)

1=0

p

> (L= t7 ) (e + ai)[0u0i(t) 0" di(1)] () (I11.3.19)

1=0
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with the convention ag = 0, and (m?); = (m?);—1 + (6m?);_1, a; = a;_1 + da;_1.
It remains to give, at each scale, the precise definition of the counterterms
dm?, 6a and 6.

D) The Mayer expansion and the definition of counterterms

At each scale, after each corresponding cluster and vertical expansion has
been performed, we have to define and perform a Mayer expansion. As previously
stressed, the main conceptual difficulty is that cluster expansions generate poly-
mers (sets of cubes) but Mayer expansion generate configurations, i.e. sequences
of polymers joined by Mayer links. Iterating this process leads to sequences of
sequences of sequences... and it is not easy to picture the result. This seems un-
fortunately an intrinsic difficulty, which can be avoided only by hiding it into an
induction: we prefer to underline it right from the beginning.

The Mayer expansion that we want to apply is designed to free the vacuum,
two and four point functions from hardcore constraints. However there is an ob-
stacle to apply fully this program: since there can be an arbitrarily large number
of polymers with four external low momentum fields, if we were to suppress all
hardcore constraints between them, there would be the possibility that an arbi-
trarily large number of low momentum fields accumulate at the same place, and
by the local factorial principle, this would lead later to divergences when these
fields are estimated.

We should remark also the vertical expansion can produce only one countert-
erm per cube A with A = 0. Therefore it would be nice if the two and four point
functions had all their external legs in a single external cube, and if such external
cubes remained disjoint (with hardcore constraints). After playing sometime with
this idea we are lead to the conclusion that the Mayer expansion should apply to
the vacuum, two and four point functions, but not to their external cubes, i.e. to
the cubes which contain their external fields, and that to prepare the function for
renormalization: we should separate it into a local and a renormalized piece, in a
way such that the local piece has only one external cube, hence will match exactly
with the counterterm.

Let us give more precisely the corresponding rules, in the case of the first slice,
with index 0. The cluster and ¢ expansions have produced a set of disjoint polymers
with various number of external low momentum fields ¢;. The vacuum polymers
are called V7, ..., V,,. The two and four point polymers are then separated into a
local part and a renormalized part according to formulas analogue to (II1.3.12) (we
may treat in the same way the polymers with one or three legs but they vanish by
parity considerations so let us neglect them). It is better to use fully symmetric
formulas, such as (we temporarily use simply ¢ as the notation for the external
fields which are really ¢1):

d(2)p(y) = (1/2)[¢(2)*+6(y)*+[(2—y)" 0,0 ()] *+[(y—2)" 0, (9)]*] +[P () (y) ] ren
(I11.3.20)

o(x1)(w2)d(w3)d(x4) = (L/4)[Y d(ws)*'] +[6(x1)$(w)d(w3)d(4)]ren (I11.3.21)

i=1
where [¢(2)P(y)]ren is an expression symmetric in x and y with at lest three deriva-
tives acting on ¢, and [¢(x1)P(x2)P(x3)d(x4)]ren is an expression with at least one
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such derivative. For instance we may take:

2

[p(x1)P(22)P(23)P(24)]ren = — Z [/0 dt(vj — )" 0,0(v; + t(x; — x;))

1<j

| | D) (I11.3.22)

1<k<d ki k#]

Using this decomposition for all polymers, we obtain what we call local and renor-
malized two and four point polymers. The local two and four point polymers are
labelled as W1, ..., W,, and have all their external legs at the same point, hence in a
well defined cube of DY, called the external cube, E; of W;. All other cubes in the
support of W; form what we call the internal domain I; of W;. The renormalized
polymers contain derived fields at interpolated points such that x; = t(x; — ;)
and since the rules for connectivity do not imply that polymers are convex, we
must consider in this case that the cube containing the interpolated point is con-
nected to the polymer; this is a new type of link (with decrease obviously similar
to the regular decrease of an ordinary propagator) to add to the list of the previous
section.

Polymers with more than 4 external legs or renormalized polymers with two
and four external legs will be treated similarly from now on because they have
good power counting. They are labelled as Y7, ..., Y.

We define the Mayer expansion as removing all hardcore constraints involving
one vacuum polymer V' or one internal domain /;. Hence at the end, hardcore con-
straints between the Y’s and the external variables £; do remain. More precisely
we have a big sum:

> [T A0V AW;)A(Yz) PPy (I11.3.23)
{Vi}{Wj:Ej UIj ,Ej ﬂ[j :@}{Yk} %7,k

where the hardcore interactions are divided into Pjand Ps:

Pl = H e—V(Vi,Vi/) H e_v(viij) H e—V(Vi,Yk)
1F#£1! 2,7 i,k

[] e V@l [ e VLo eV 5w (I11.3.24)

J#i J#i gk
Py = H o~V (Ej E;r) He—V(Ej:Yk) H eV (e, Yyr) (I11.3.25)
i# gk ko k!

where V(X,Y), as in section III.1 is the hardcore interaction, with value 0 if X and
Y are disjoint and 400 otherwise. The Mayer expansion consists in expanding Py
according to the algebraic formula (III.1.33), but in the inductive way examplified
by (II1.1.37-38). P, remains unexpanded. The result is expressed as a sum over
configurations, i.e. sequences of polymers. The normalization (sum over vacuum
configurations) is fully factorized as in (I11.1.44). However the computation does
not correspond exactly to truncated functions, but rather to a partial truncation
at the level of two and four point functions, which furthermore is restricted by the
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fact that the truncations relative to the “external cubes” are not performed. Of
course the convergence theorems of section III.1 still apply to such situations. The
important point is that with this restricted rule, as in the convergent case, the
number of external fields ¢; in any cube of D” cannot get large except when many
corresponding propagators hook to distant other cubes, so that the corresponding
local factorials remain controlled by the volume effect (lemma III.1.3) *.

The result of the expansion is expressed as a sum over 0-configurations, i.e.
sequences of 0-polymers joined by Mayer links.

Actually there is a detail which is not yet correct, but that according to D.
Knuth’s pedagogy we did not address until now. Each time a Mayer configuration
is generated by the overlap of two local two point functions both corresponding to
mass terms (i.e. both with external fields ¢?(z)), a four point function is generated
which is neither local nor renormalized. So we have to apply again to these objects
the decomposition (II1.3.24). In the new local four point functions defined in this
way there is again an external cube and an internal domain, which contains the
previous external cube of one of the two point functions whose overlap formed the
four point function. Therefore the global definition of external cube and internal
domain at the beginning is not exactly correct.

One correct rule (not unique) is to decompose first the two point functions
into local and renormalized parts and define the corresponding internal domain and
external cubes of the two point functions; then expand all hardcore constraints in-
volving the internal domain of local two point functions. Only when this is finished
the four point functions are defined, decomposed into local and renormalized parts
(with the corresponding external cube and internal domain for the local parts).
Then the remaining constraints, involving vacuum polymers or internal domains,
are expanded.

Performed in this way the Mayer expansion factorizes all vacuum polymers
and generates configurations with two or four external fields which are either of the
local type (with all external fields hooked at the same point) or of the convergent
or renormalized type (hence have favorable power counting). Moreover the two
and four point local configurations, apart from their single well defined external
cube, are completely free of any hardcore constraints with the other objects of the
expansion.

Then the cluster and vertical expansions are performed at scale 1. They
generate maximal connected objects made of a set of 0-subconfigurations and of
a set of cubes of D!. Of course the Mayer links of the 0-th Mayer expansion
are taken into account for connectedness. Let us call 1-polymers these maximal
connected objects, with some slight abuse of language. We can define the local and
renormalized parts of the 2 and 4 point 1-polymers in the same way than before.
The external cubes of the local two and four point functions do have hardcore
constraints since by definition they belong to D'. We perform then the scale 1
Mayer expansion by expanding all hardcore constraints of type P;, and obtain a

* Tt would be possible to remove all the hardcore constraints involving a two-
point polymer, because when n such objects accumulate in a given cube, we recover
a 1/n! symmetry factor which compensates for the n! obtained by gaussian inte-
gration of 2n fields. This possibility does not extend to higher point functions, so
we will not actually use it.
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sum over l-configurations, in which hardcore constraints of the type P, remain
(between external cubes or 1-polymers of the local type or 1-polymers with more
than four external legs).

Iterating this process, for each scale ¢ we generate ¢-polymers and ¢-configurations.
It remains to show that with the correct definition of the counterterms ém?2, da
and O, every i-subconfiguration in the expansion is renormalized, i.e. every local
two and four point subconfiguration disppears exactly (this corresponds to the
perturbative rule for the effective expansion that each almost local subgraph is
renormalized).

We give the precise definition of the counterterms and perform renormaliza-
tion in three steps. The i-th cluster, vertical and Mayer expansions are performed
with (m?);11 = (m?);, a;x1 = a; and \jy1 = );; they are called the first level
expansions (for slice 7). Then we define first the mass and wave function coun-
terterms (respectively (§m?); and da;) as minus the sum of all local two-point
i-configurations with fixed external cube A generated at this first level (respec-
tively with external fields ¢*(z) and with external fields 9,¢0"¢(z)) To transform
[(x — y)*d,6(x)]? into (1/8)|y — z|*0,,¢0"¢(x) is similar to (I1.3.44-46) and we do
not repeat it here.

In this way we obtain correctly normalized values for these counterterms,
which clearly do not contain hardcore constraints with other configurations and
are independent of A (up to boundary effects *).

The full expansion for slice 7 is then recomputed with the new values (m?); 1 =
(m?); + (6m?); and a;11 = a; + a; fed into formulas (II1.3.18) and (II1.3.19), but
still with A\;41 = A;. The result is called the second level expansion, in which every
2 point local i-configuration is exactly cancelled.

Indeed the case in which a local two point configuration with external cube A
is generated by the former first level expansion cancels exactly against the new case
in which two ta derivatives have generated exactly one counterterm of the type
(6m?); or éa;, and there is no other possibility for local two point i-configurations.

To check that the cancellation is exact, one has to remark that the coun-
terterm, 6m? [ ¢7,,(x)dx is completely independent of the fields of slices i and
above. Therefore after the second level cluster and ¢ expansions but before the
second level Mayer expansion the value of a two point ¢-polymer with one such
counterterm produced in A reduces to this counterterm times the value of the
vacuum polymer to which A belongs. After the second level Mayer expansion,
the vacuum graphs are factorized, and the value of the i-configuration becomes
therefore 1 times the counterterm, hence cancels exactly with the sum of the for-
mer (first level) local i-configurations, as announced. This statement is somewhat
tautological. Indeed with the cluster and Mayer expansions of section III.1, we
may compute normalized Schwinger functions even in the case where the external
fields decouple. When there is a single such external source ém? in the cube A,

* Because of the boundary effects due to our finite box A, ém?, éa and 6 have
still weak dependence on A. We decide to neglect this dependence since it has no
effect on the results. A way to avoid it completely is to pass to the thermodynamic
limit A — IR* in each slice successively rather than at the end of the expansion.
We leave to the reader to develop this nice possibility.
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the unnormalized Schwinger function is obviously ém?.Z, where Z is the normal-
ization. Computed by formula (II1.1.44), it is also equal to AT (M).Z, in which M
is the Mayer configuration containing the source. Therefore AT (M) = §m?, which
is the desired result.

Finally the counterterm 6); is computed in the same way as minus the sum
of all local four point i-configurations generated at the second level. The new
value A\jy1 = A; + 0A; is fed into (I11.3.17), and the expansion is recomputed for
the third and last time. This leads to a third level expansion in which all two
and four point ¢-configurations are of the renormalized type. Remark that 6);
depends on (6m?);, since two local two point functions (at least one of which is
a counterterm) may still combine at second level to give new four point functions
(which are automatically decomposed into local and renormalized pieces, hence
taken into account for the value of 6);). For instance the vertical tA expansion,
which is a Taylor expansion to fourth order, may create two mass counterterms
in a single cube A with tA = 0 which is a new kind of four point function. It is
for this reason that we introduced these “levels”; in the following we forget about
them, and the expansion we speak about is always the final one (third level).

In the case of complex A there is one additional small technical detail linked
to the special form of (II1.3.17) which has to be mentionned here: if we study
what means ¢}, in formulas (II1.3.16-17) we realize that not every four point
i-configuration generated by the expansion has necessarily four external fields of
the type ¢;11, hence is suitably renormalized by a counterterm of the form ¢ iy
There is indeed the possibility of a (single!) border vertex of a 4 point configuration
having only one field in slice ¢ and three fields below, in which case the three fields
become of type (¢;41)® only if we add the missing momentum violating piece
AImA(¢* (s 42)3. If we write:

40" (ig2)® = 40" [(Pir1)® — 3(dix1)?0" ™ + 301 (") — (¢"T1)3]  (I11.3.26)

we obtain two classes of four point ¢-configurations, the normal ones with 4 external
fields ¢;41 and exceptional ones with some of their external fields being ¢'*!.
The obvious rule is then not to take into account these exceptional objects in
the computation of 6\;. They should not be considered as true four point i-
configurations. As a consequence they remain unrenormalized at scale ¢; this has
no consequence at all, because there is no logarithmic divergence associated to
such objects; recall that the need for renormalization of four point almost local
objects comes solely from the lack of vertical decrease between their internal and
first external scale; but for these exceptional objects, the first external scale is ¢+41,
next to the last internal scale ¢, so there is obviously no divergence associated to
them. We will not return again on this small technical detail in the following.

E) The functional bounds

When the expansion is completed, we write it as a sum of terms

> / ABCPdu(¢) (I11.3.27)

where as in (II1.2.16) A is the exponential of the interaction (including the quadratic
pieces), B is a product of high momentum or well localized fields, and C' is the
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product of the low momentum or badly localized fields. As before, P is the prod-
uct of all explicit factors (not depending on fields) created by the expansion: this
includes the former factors such as propagators derived by the cluster expansions,
coupling constants derived by the cluster and vertical expansions and the new
e~V Y") _ 1 factors (Mayer links) derived by the Mayer expansions. The princi-
ple of the functional bounds is then the same as (I11.2.11), namely high momentum
fields are integrated with the help of the gaussian measure, and low momentum
fields are “dominated”, i.e. bounded with the help of the interaction.

The precise rules to determine what is a low and a high momentum field
are the same than in the previous section II1.2.C. Beware that in this infrared
problem indices run in the opposite way, so that many formulas of the previous
section cannot be used literally but summations or inequalities involving indices
ususally have to be reversed. There is also a minor modification, concerning the
Im\ vertices, in which ¢;,; must be replaced by ¢;1o + ¢**t! and ¢**! must be
treated as a high momentum field. We might even do this systematically for all
vertices, so that by convention the low momentum fields would be always of the
form ¢;42; the corresponding small technical changes would not be relevant for
the main issue of convergence of the expansion.

The t dependence reconstruction and the decomposition of low momentum
fields into smeared pieces plus flucuation fields is exactly similar to the previous
formulas (I11.2.26-30). Domination of the smeared low momentum fields proceeds

as before, using the ¢* interaction for fields and the 9,¢9*¢ interaction for derived
fields 0¢.

One delicate point however has to be discussed: the coupling constant which
equips the vertex to which such a low momentum field ¢; is hooked is A\; where
¢ is the initial production scale. We will soon check that by asymptotic freedom,
Aj = A/(1+AB.7) may be much smaller than A\; ~ A/(1+Af.7) (see (II1.3.28)). The
total factor associated to a vertex (apart from power counting factors) is therefore
at worst /\i/\j_3/4 < ¢.AY4(j — i) for some constant ¢ (the high momentum fields,
integrated with the gaussian, do not modify this estimate). We have therefore to
find a factor to compensate for the potentially harmful difference j — i (when this
difference gets large). Fortunately power counting in a usefully renormalized ex-
pansion is always favorable, so there is exponential decay in the vertical direction;
moreover each pair of lines hooked to a vertex has a separate exponential decrease
(which is in fact at least M ~1#=71/18 ‘see (I1.1.19)). We can pick a fraction of this
decay M~<U=%9) and use it to bound the corresponding factors (j — i), up to a
constant. Remark that different factors 7 — ¢ correspond to different pair of fields
hooked to a vertex, hence there is no risk of factorials of the renormalon type
generated in this way.

Similarly when the vertex is of the 0"¢d,¢ type, there is at most one leg
dominated. This consumes (¢ +a;)~'/2, so that at worst /<% remains for each

6+|Z; |
such vertex. But in the next section we find that a; = Z;:o ba; is finite and of
order X for small ), independently of i (see (II1.3.32)). By our choice of € = v/},
again a small factor ¢!/2 = A\1/4 (up to a constant) remains for such a vertex.

It remains to discuss the case of mass vertices §m?¢2. It will be shown below
(in (I11.3.29)) that the correct choice of counterterms is such that |(6m?);] <
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c- A M~? so that such a vertex, produced in a cube of side M* and volume M*
is neutral just as a ¢* vertex; in this case at most one leg is a low momentum leg;
its domination with the ¢* interaction costs at most A; 1/ 4, hence again a small
factor (here at least /\?/ 4) remains for convergence purposes.

The conclusion is that in every case a small factor per vertex do remain for
the convergence of the expansion.

Finally let us examine what happens in the case of a complex coupling A. As
sketched above, domination is all right for all the vertices with at most two badly
localized legs, provided the radius of the disk Cg is chosen small enough. (This
includes in particular the case of the quadratic vertices é§m?¢?). The only danger-
ous case is the “momentum violating piece” ¢4,,, with imaginary coefficient. We
choosed formula (II1.3.17) precisely so as to eliminate the term Im A¢%,,. The for-
mula (IT1.3.17) does contain imaginary vertices of the momentum violating type,
but they are counterterms. We will show below that 6A\; ~ 3A?. Therefore, since
AReA™3/* is small for A € Cp, these imaginary pieces do not create any problem
when bounded by the corresponding ReA¢* interaction.

The rest of the argument is essentially similar to section III.2.C, and we
do not repeat it. Renormalized two and four point functions have indeed the
same power counting than a six point function. Let us remark however that after
domination and evaluation of the gaussian integrations over high momentum fields,
summation is no longer over subpolymers Gi but over subconfigurations, so that
the full results of section III.1 (not only the results on the cluster expansion but
also theorem III.1.3 on convergence of the Mayer expansion) have to be used in
order to control such summations.

A final comment is in order about the external variables ¢(x1),...,d(znN).
Their treatment depends in some respects of the kind of results we are after.
For a simple proof of existence of the correlation functions in the infrared limit,
these external fields are smeared against some test functions of the scale 0 (or
taken at fixed lattice sites if we work on a lattice). Hence, like in the ultraviolet
problem it is convenient to consider by convention these external fields as having
index —1, independently of their true index in the decomposition of each external
field ¢ as a sum of ¢! fields. But this rule has the opposite effect than in the
ultraviolet problem as far as renormalization is concerned: the polymers with e.g.
four external fields (and no low momentum fields) have not to be renormalized in
the effective expansion. Indeed their power counting is already favorable, because
translation invariance is broken at the highest possible scale by the presence of
the external fields, which are smeared over well-defined cubes of the smallest size
in the problem.

F) The behavior of the effective constants

The behavior of the effective couplings is studied in the manner of section
I1.5, i.e. inductively. We may do this in two steps. For the purpose of domination,
hence of convergence of the partially renormalized phase space expansion we may
prove first inductively a crude bound, then we can study in more detailed the
recursion relation which give the flow of effective constants, and prove asymptotic
formulas like (II1.3.4-6). Some additional work would lead also to the rigorous
proof of the more detailed results about logarithmic deviations from mean field
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theory in this model which have been derived by the use of the renormalization

group. Here we will limit ourselves to check some rather crude bounds, in the form
of:

Lemma III.3.1 There is some constant 3 and some large constant ¢ such that:

Re(A\; ') > Re(A™Y) + B-i — O(log) (I11.3.28)
16(m?);| < e - \M—2 (I11.3.29)
6a;] < c- (M\)? (I11.3.30)

These three bounds are derived by looking at the first non trivial term in
the definitions of the counterterms. For the coupling constant, this is our friend
the bubble graph, which means that the recursion relation is \; = A;_1 — 8\ ;| +
o(A\2_,), and this leads to the recursion relation A\;' = A\;!, + 3+0()\;_1). Starting
from some place in Cr we are driven to the real axis and to the origin, hence
(III.3.28) holds.

Similarly the leading graph for the mass counterterm is the single vertex “tad-
pole”, which is proportional to \;; for the wave function constant the leading graph
is By in Fig.I1.5.1 and this leads to the quadratic bound (III.3.30). Combining
(III.3.29) and (II1.3.30) with (II1.3.28) we obtain some bounds for the total flow
of the mass and wave function terms:

i 6(m?);] < O(N) (I11.3.31)
i |6a;] < O(N) (I11.3.32)

The reader may wonder why the leading orders are the natural radiative
corrections in A since in this problem there are interactions €d,¢pd"¢ and m?¢?. In
particular the coefficient e is v/ so subgraphs with such vertices seem to dominate.
However this is only apparent. We know that if we push the expansion up to a
given order n in A (hence e.g. up to 2n in €), the graphs with e vertices will
recombine exactly to change the factor 1 — € of p? in the denominator of each
propagator into 1 up to o(A™). Similar remarks apply to the mass vertices, which
are shown below to be O(A). Hence the renormalization group flows are indeed
given by the ordinary radiative corrections.

Remark that the flow of effective constants is simpler in this infrared problem
than in the ultraviolet problem of section II.5, because at least for the coupling
constant and wave function constant, there are really no renormalization condi-
tions; we start with given values A and 1, and let them evolve as they want (in
fact they go to the gaussian free field theory with some wave function constant
close to 1). In particular there is no need of introducing the intermediate values
A? as was the case for the g? of section II.5. The only non-trivial renormalization
condition is that the renormalized mass should be set to 0. We address this issue
now.

G) The inductive choice of m;., =0
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The expansion converges, but what does it construct so far? Not exactly the
massless theory, unless the initial mass term m? in (IIL.3.1) is fine-tuned to the
correct value. To obtain this, we have to compute

m? m? + Z((5m2)i (I11.3.33)

ren —
1=0

2

2en, = 0. Of course the counterterms

and to prove that there exists m? such that m
(6m?); are themselves functions of m?, as every other quantity in the phase space
expansion. But from (II1.3.29) and (II1.3.31) we know that the series in (I11.3.33)
converge, and that fy(m?) = —> 2 ,(6m?);(m?,\) is O(A). Therefore for e small
and A small enough f maps the interval [—e, €] into itself. To show that f has a
fixed point, it remains to prove that it is contracting, hence to compute # .
The —%; operator creates a mass term m? [ ¢* from the exponent of the initial
functional integral (II1.3.1), (II1.3.7) or (II1.3.14); it remains to evaluate the effect
of such a term on the counterterms (6m?);. This is done with the phase space
expansion. The result is simply bounded by m? - O(\), hence for ¢ and A small the
mapping f) is a contraction and has a single fixed point m?; this fixed point is O(\)

and at the fixed point we have m,.., = 0, as desired. To derive the asymptotic

decay (I11.3.4-5) of the propagator at the fixed point is then a simple exercise.

There is one issue which we postpone until now. We remark that the tadpole
graph is negative (for positive \), hence the leading counterterm (6m?); is posi-
tive. Therefore m? itself is negative®. The careful reader may worry about the
functional integration with such a term. It is true that one can no longer bound
the exponential of the interaction by 1 simply like in (ITL.1.25). But m? = O()),
and

i—1
mi =m® + Z(émz)j = M~20(N\) (IT1.3.34)
j=0

since Y- ;(6m?); = M~*0();) by an analogue of the analysis above. Hence
when we have to bound a functional integral in a cube A of D* we can bound the
dangerous positive mass term in the exponential by half of the negative ¢* term,
uniformly in ¢. A prototype of the corresponding inequalities is

o Lo [ 07 o e a2 [ 6t (II1.3.35)

for some large constant K, since by a Schwarz inequality

/qsngZi(/ oM (TT1.3.36)
A A

The large constant K in the empty cube disappears in the normalization and
in non empty cubes is compensated by taking A still smaller. Half of the large field
decrease of the ¢* interaction remains available for domination tasks; again some

* We recall that m? is simply a notation for a parameter which was not assumed
to be the square of a real number. We may consider m to be in fact purely
imaginary in this problem.
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big constants in the estimates get still bigger, but of course convergence itself is
not in danger for A sufficiently small.

H) Analyticity and Taylor remainders

To complete the proof of Borel summability, it remains to prove that the
correlation functions built by the expansion become analytic in A when p, A — oo
(this is not true in finite volume, because (I11.3.14) is not analytic). Then we have
to compute the Taylor remainder at n-th order in the bare coupling constant A of
these functions and verify a factorial bound (I1.5.2).

To verify analyticity, we apply the 8% operator to such a correlation function,
as defined by the effective phase space expansion. This operator must act on the
only non analytic piece, hence it creates at least one momentum-violating vertex
gzﬁ‘}wv swimming somewhere in the phase space expansion. It is therefore similar to
a new kind of external source, except that this one is smeared over the whole of A,
not over a cube of slice 0. We treat this vertex in the same way than other external
sources, namely the corresponding fields have scale —1 by convention, hence the
divergent polymers which contain them are not renormalized. The limit p, A — oo
is performed as before, and this limit vanishes because such a vertex vanishes
when A — oco. Of course a true proof requires to check that this vertex does not
destroy the convergence of the expansion. If we perform the thermodynamic limit
with a smooth C§° volume cutoff A(z) and link the limit p — oo and A — oo
by the natural rule [ A(z)dr = M*, we find that a momentum violating vertex,
integrated in such a volume A, gives a very small factor M %7, where k, which
depends of the exact shape of the smooth function A, can be adjusted to any large
fixed integer we want. In this way we can compensate for the large volume factor
M* associated to the fact that this new external source is summed over the whole
of A, instead of being smeared over a small cube of size 0. This proves that in
the limit p — oo analyticity is recovered. If we insist on A being not smooth but
being the characteristic function of some cube of D”, we have to take boundary
effects into account and the proof is slightly more complicated, but of course the
result remains true.

Finally the Taylor remainder bounds are obtained by developing explicitly n
vertices from the exponential before applying the whole phase space expansion.
The result converges in the same way than before, but with a prefactor n! which
is simply the large order bounds on perturbation theory detailed at length in part
I1. Therefore we can apply the Nevanlinna-Sokal theorem and complete the proof
of Borel summability of the correlation functions in A.

I) Weak triviality

The construction of infrared ¢} is interesting because it allows to put on a
mathematically rigorous basis the famous analysis of this model by the renormal-
ization group [KW]. The logarithmic asymptotic freedom of the model leads to
the possibility of a non trivial fixed point of the renormalization group below four
dimensions; in its most naive form, this is because the coupling constant is di-
mensioned out of d = 4. The corresponding evolution equation for the effective
constant \; is therefore A\;11 ~ e\; — BA?, with ¢ = d — 4, and it has a non trivial

€

fixed point at A ~ 5 This fixed point is small for small e. These observations
are at the basis of the analysis of non-trivial infrared fixed points in powers of €
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(the Fisher-Wilson expansion). This expansion leads to reasonably good numerical
computations of critical exponents in d = 3 (e = 1).

But the construction of infrared ¢} sheds also some light on the ultraviolet
problem for ¢j. Theorem II1.3.1 can be immediately rephrased as a triviality
theorem for ultraviolet ¢ at weak bare coupling. More precisely:

Theorem 1I1.3.2: triviality at weak bare coupling

Let us consider the ¢ model with fixed (non zero) renormalized mass and wave
function constants (for instance computed in the BPHZ scheme), a cutoff p and a
bare coupling A,. There exists some € > 0 such that the corresponding ultraviolet
limit is a free field provided the bare coupling A, is smaller than e for all p.

Of course the weak coupling condition is very restrictive, but it cannot be lifted
if we want the phase space expansion to converge. There are more general triviality
statements [Aiz|[Fr| which apply for any bare coupling but they are limited to a
lattice regularization and they operate fully only for d > 4, with some problems
remaining at d=4. They rely on rigorous inequalities, the only alternative tools
we know so far when convergent expansions fail.

On this issue we have to conclude rather sadly that for the moment neither
the construction of ultraviolet ¢} nor a fully general triviality theorem does seem
accesssible with phase space expansions. This problem remains of more than
purely mathematical interest since ¢ is expected to govern the dynamics of the
Higgs particle, and it is not clear how the triviality issue changes when coupled to
non-abelian gauge fields and exactly how it affects the corresponding physics.

As a final, more optimistic note, let us mention that the relationship between
the bare and the renormalized couplings is not yet fully understood and that
some interesting or surprising results may await us in this domain. In particular it
should be interesting to study the relationship between the infrared and ultraviolet
3 functions of ¢} as is attempted in [Kop]. The infrared 3 function is defined as
the limit, when © — oo of the derivative of the bare coupling with respect to
r = log ﬁ, where k is the ultraviolet cutoff scale and m,., the renormalized
mass. This limit has to be computed by holding the renormalized coupling fixed,
and has to be expressed as a power series in the bare coupling. In our notations x
is roughly plog M. This infrared beta function is the natural infrared analogue of
the ultraviolet 8 function, which is computed by holding the bare coupling fixed
and looking at the variation with x of the renormalized coupling, reexpressed in
terms of the renormalized coupling (see the end of section IL.5). In the phase
space expansion, recall that up to terms in (log M )P, p > 1, which reflect the
discrete nature of our flow equations, the ultraviolet 3 function is what we obtain
when we compute the discrete change 6\ in A. This is certainly a well defined
quantity, but phase space expansion expresses it as a power series in all the previous
running couplings, and the ultraviolet power series for the 3 function is obtained
only by expressing all these intermediate couplings in terms of the last one, a
potentially dangerous operation since it generates uselees counterterms usually
associated with renormalons. In contrast the infrared beta function is related to
the precise behavior of the renormalized coupling, beyond the obvious x and log x
terms, expressed in terms of the bare coupling. In [Kop] it is shown that there is
a renormalization scheme in which the ultraviolet § function as a power series in
the renormalized coupling is equal to the infrared one as a power series in the bare
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coupling, and it is argued that the infrared § function, being related to the infrared
Schwinger functions can also be defined by Borel summation. It would be then
possible to define the ultraviolet Callan-Symanzik equation non perturbatively at
least in this particular scheme. This scheme ressembles the minimal subtraction
scheme in dimensional regularization. This gives some weight to the belief that
in the dimensional minimal subtraction scheme there are also no renormalons in
the ( function, a belief which would partly justify its use in the computation
of the € expansion [BDZ]. Even in the BPHZ scheme the presence or absence of
renormalons for the 3 function is unclear [Kop]. If the [ function became well
defined a rigorous study of renormalons would be easier, as explained in section
I1.6. Also it would be quite intriguing that the equations of transformations of ¢}
under a change of scale may be defined non perturbatively. Well defined differential
equations do have local solutions; if the corresponding flows are not complete, it
is because the solutions explode to infinity in finite time (as we see for the bare
coupling). To cure this defect one has usually to reformulate the equations in
an other (more compact) space. It is perhaps in this way that one might reach
in the future some positive results concerning ¢3. Let us conclude simply as a
philosophical remark that in mathematics non-existence theorems rarely remain
the last word on a subject: often a problem with no solution is simply badly
formulated and has to wait until the proper formalism in which it does have a
solution is found.
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II1.4 The Gross-Neveu model

A) Two dimensions

The Gross-Neveu model in two dimensions [MW] [GrNe] is a model of fermions
with a color index N > 1 and a quartic interaction. The model was introduced
in order to study ultraviolet asymptotic freedom, dynamical symmetry breaking
and the non perturbative generation of mass in a context simpler than non-abelian
gauge theories. The case of a single fermionic field (N = 1) is known under the
name of the massive Thirring model. This model can be mapped exactly on the
bosonic sine-Gordon model and is the subject of an extensive literature, but it is
not asymptotically free in the usual sense (its [ function vanishes exactly), hence
we do not discuss it here.

The massive two dimensional Gross-Neveu model has formal euclidean action:

S, ) = ¢lia P +m)v — A - v) (IT.4.1)

where -1 = Za@ %)%, The letters a, b, ... are used for color indices, hence take
values from 1 to N and the letters a, (3, ... are used for spinor indices (which in two
dimensions take two values). Pairs of a color and a spinor index such as (a,a),
(b, B) are noted A, B... Except in the explicit computations of the leading graphs
which drive the discrete evolution of our effective constants, the spinor and color
indices may be forgotten. The model has a perturbation expansion similar to the
one of ¢* (more precisely to the one of N-vector ¢*, for which vertices should show
the circulation of indices). But it is just renormalizable in two dimensions, just as
¢* is in four, because a fermionic propagator decreases at large momenta, like p~!,
not p—2.
We introduce the following conventions for two dimensional v matrices:

Yo = (02_0) "= (Ell()) (II1.4.2)

and the usual relations 0 = o0y + 7101 etc...
The 2p point functions are formally defined as:

Ay...A,B1..B, 1 a o — =B,
SQpl ' (yla (A ypa Rl eeey Zp) = 2 / a1 (yl)"'¢a; (yp)wlil (21)~~~¢bp (Zp)

e MO0 TT i () dop () (I11.4.3)

with the usual rules of fermionic (Berezin) integration. We do not know how to
define fermionic functional integrals rigorously except by performing them explic-
itly, which is possible here. Indeed the perturbative expansion of an unnormalized
Schwinger function 53, is:

00
U,Al...ApBl...Bp . An d2 d2
SQp (ylv-"aypv Zla"'azp) - E g F T1...d Ty
n=0C;,D; = ’A

<y1...yp561331332332~~37n55n (I11.4.4)

A1...A,C1D,...C Dy,
zl...szlxlxgxg...xnxn>

By...B,C1D;...C, D,
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where the upper variables correspond to the v fields, the lower variables correspond
to the ¢ fields, and we use the notation:

u w Al.. A,
( - n) = dot (O (us,v;) (IT1.4.5)

UV1...Up, B,..B,

The propagator C’g is diagonal in color space (vanishes unless a; = b;) and
for a; = b; it is equal to (— p + m)/(p? + m?). Let us replace it by a propagator
C, with the same index dependence and our favorite ultraviolet cutoff (of course
other ones may be accommodated):

Cplp) = Cp)e™ ™ @+ = 37 0¥ (p) (ILL.4.6)

=0
Cﬂ,(p) _ C(p) (e—Mfzi(p2+m2) B e_Mfz(ifl)(p2+m2)) T > 1
CO(p) = C(p)(e " +m) —1) (IT1.4.7)

The indices now run again in the regular way for an ultraviolet problem, and
the lattice of cubes D? is again the lattice of cubes with side size M . The sliced
propagators are very similar to the bosonic ones; in particular they satisfy for any
given fixed r the bound:

0" C (2, y)| < K - M-mTDe=eM o=yl yp, < (I11.4.8)

where K and ¢ are constants (depending only on r), and 9" is any partial deriva-
tion of order m.

With such an ultraviolet cutoff and a finite volume A, the series (III.4.4)
have in fact an infinite radius of convergence, so that they can be taken as a well
defined starting point for the bare theory. Indeed, as we know now, in the cutoff
¢* theory the divergence of perturbation theory is a local phenomenon due to
the fact that vertices can accumulate in a small spatial region where they become
undistinguishable for the propagator. But fermions cannot behave in this way
thank to the Pauli principle.

Mathematically this corresponds to the fact that if we develop the determinant
(IT1.4.4) we recover the usual ¢? graphs, hence n! contributions at order n. However
we know that in a determinant there are many changes of signs, so that typically
tremendous cancellations can occur. Hence let us start our discussion with a simple
bound [IM2], which proves the convergence of (II1.4.4) and is also useful for the
phase space analysis of the model.

Lemma II1.4.1

For any positive integer r there exists a constant K (r) such that, if C*(x;, yx)
is the n by n matrix with (j, k) entries C*(z;,yx) and for any A € D?, na (re-
spectively na) is the number of x; variables in A (respectively the number of y;
variables in A), we have:

1

ENEONG (I11.4.9)

[det € ()| < (KM T
A
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Proof Let us give the proof for any dimension d of space time. The total number
of color and spinor pairs is 2N. Let us define p = (4r + 2)d and divide each
cube A € D’ into na/4NdP cubes, each of side size M~*.(4NdP/na)'/?. Such
a new cube is noted A,, its center is noted z,, and the number of variables z;
(respectively yi) that it contains is noted n,, (respectively ny). If z, is the center
of the cube A, containing x; we apply a Taylor expansion to the propagator
C(xj,yi), writing:

m=0

p—1 m
1
x]vyk § WH —Za lauzc(zaayk)
=1

1 1 p p
+(p—1)!/0 dt(1-t)” 1;[ i—%a) 1;[ Clxi+(1—t)(za—2:), yx) (I11.4.10)

In this way each row of the initial determinant is a sum of at most dP*! vectors.
Expanding the determinant, we get a sum of at most d”®*! determinants. In
any of these non-zero new determinants at least n, — 2NdP of its n, rows with
arguments x; localized in A, must be remainder terms in (II1.4.10). For each row
containing a term with a ¢-th order derivative localized in A, we have using the
bound (T11.4.8) a net gain in the estimate of the propagator of (4NdP/na)%/¢. If
we expand any such determinant by brute force we obtain therefore the bound

| det C* (zj,yu)| < KT T [ (1/na)tme—2New/d. B (111.4.11)
A ALCA

where B is evaluated as a sum of Feynman graphs without any cancellations taken
into account, hence by the local factorial lemma (Lemma I1.6.2):

B < KiM™ [ v/(nal)(mia)) (111.4.12)
A

Since
> (na —2Nd?) =na/2 (I11.4.13)
ALCA
we obtain
| det C* (2, yi)| < KP K [[(1/na)2®2D=12/(nl) (I11.4.14)

and repeating the argument with the columns and taking the geometric mean of
the two bounds achieves the proof of the lemma, since p = (47 + 2)d.
Furthermore we can apply the lemma to C, instead of C*; if p is fixed to a con-
stant, C), satisfies the bound (II1.4.8) (e.g. with i = 0). Therefore the announced
result that the bare perturbation expansion for the Schwinger functions with both
ultraviolet and finite volume cutoff A has an infinite radius of convergence follows.
We can integrate the x and y positions over the whole of A, which give a factor at
most ¢®* in the bound, if ¢ = |A[ is the number of unit cubes in A. The product
over these cubes of e.g. nalnal is at least (2n)!/(2¢)*", hence applying the lemma,
with respect to the cubes of D° with r = 1 we have a series bounded by a series in
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A" of an exponential type, with infinite radius of convergence. Of course the cor-
responding bounds are very crude, and would not allow a study of the ultraviolet
limit. The phase space analysis that we introduce now will precisely allow this by
improving vastly over this bound.

Starting with the well defined bare theory (II1.4.4-5) and C' = C, we call the
bare quantities for A, m and a respectively A\,, m, and a, as usual.

We apply a phase space expansion similar to the previous case, the determi-
nant in equation (II1.4.4) playing the role of the exponential of the interaction in
¢%; it is also an expression which cannot be developped completely without loosing
the structure of cancellations responsible for convergence. Again the expansion ap-
plied to it must preserve most of this structure but develop it sufficiently to show a
minimal set of connections in each slice, in order to perform correct power counting
analysis and the necessary useful renormalizations (which here again correspond
to coupling constant, mass and wave function renormalization).

If we compare further to ¢* we realize that the model here is in many respects
simpler. The local bound (II1.4.9) replaces the domination in an advantageous way
because Lemma III.4.1 means that any power of local factorials can be beaten by
the Pauli principle, which is therefore in a sense much more powerful than the

decrease of e_f ¢! at large ¢. In fact it is a good intuitive picture to consider
Berezinian anticommuting variables as bounded variables. Also there is no ana-
logue of the positivity of the ¢* interaction, hence no need to preserve it in our
interpolation schemes.

The initial constructions of the Gross-Neveu model [FMRS4] [GK4] provided
the first renormalizable field theory. It was shown to obey the Osterwalder-
Schrader’s axioms (for fermions), and the correlation functions were also shown
to be the Borel sum of their renormalized perturbation expansion [FMRS4]. Fol-
lowing results on this model include the definition of general irreducible kernels
[IM2], a study of the Bethe-Salpeter equation and of two-particle asymptotic com-
pleteness [IM4] and the analysis of large momentum properties and the Wilson-
Zimmermann short distance expansion [IM3].

In this section we sketch the proof of the main result on the existence of the
ultraviolet limit of the model, summarized in:

Theorem II1.4.1 Existence of Gross-Neveu,
With the bare ansatz:

Ao = [(=Balog M)p + (B3/52) log p + C] 7" (IIL.4.15)
my,=m.p" " a,=1 (IT1.4.16)
By=—-2(N -1/ B3=2(N-1)/a* v=(N-1/2)/(N—-1) (I11.4.17)

and C' a large constant, the normalized Schwinger functions have a limit as p, A —
00, which correspond to finite values of A\yen, Myen and a,ep, in the BPHZ scheme.
Myen 18 close to m, age, is close to 1, and A, is small and non-zero, so that
the theory is not trivial. Furthermore the corresponding theory is the Borel sum
of its renormalized series (and therefore can be analytically continued to a disk
Cr; this requires to take C in (II1.4.15) complex with a large real part). It is
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therefore independent of the particular limiting process used to construct it, and
in particular it obeys the O.S axioms for fermions.

We give only a sketch of the proof since it overlaps strongly with the previous
constructions of section II.5 and III.3, and also because the reader has already the
choice between several rather detailed published constructions [FMRS4] [GK4]
[IM2]. Again we could avoid to consider running masses by performing full (useful
and useless) mass renormalization. As discussed above, this requires an analysis at
the level of one particle irreducible objects, rather than simply connected objects.
We refer to [FMRS4] for such an approach.

We have to check first that the only counterterms of the theory are of the
expected type, namely (1/3~1/))2, Y -1p and - (i P)1p. This is an analogue of Furry’s
theorem in electrodynamics, involving some algebraic manipulation of gamma ma-
trices. For its proof we refer to [FMRS4, Lemma 2.1]. Remark that a four point
function not of the form (15 . ¢)2 is not identically 0, but it is convergent and does
not need any renormalization.

As in the previous section, a phase space expansion is applied to (II1.4.4). For
each scale 7, starting with ¢ = p and ending at ¢ = 0 we perform first an horizontal
cluster expansion with respect to C* and the lattice D? of cubes of side size M,
then a fifth order vertical decoupling expansion, and finally a Mayer expansion
with respect to the vacuum graphs and the internal domains of the two and four
point functions, keeping their external cubes fixed.

At the end of the expansion we have explicit propagators or vertices (which
realize the explicit connections of the expansion) and the remaining fields still have
the structure of a determinant. This determinant is bounded using lemma II11.4.1.
Hence as announced there is no longer any distinct treatment of the “high” and
“low momentum” fields.

We compute at each scale counterterms 6\;, ém; and da; exactly like in the
previous section. These counterterms are introduced in the vertical interpolations
so as to renormalize all the local two and four point configurations generated by
the expansion.

In the last slice we obtain a sum of usefully renormalized contributions with
ordinary vertices and counterterm vertices; in particular there are 2-leg vertices
with coeflicients ng':i—i-l om; and Z;'):i-u ba; respectively for a mass or wave func-
tion vertex with highest leg in slice 7. To relate oneself to the BPHZ normalization
conditions one has to resum all two point insertions into an effective propagator.
This is possible (since the corresponding series is geometric). This effective prop-
agator is of the form

p p
e VP =Y baie™V ) +m, = smie”" +0(p*)] ! (IT1.4.18)
i=1 i—1

with V' = (p® + m2).

The discrete flow of A, m and a is governed by the leading graphs, and to
land on the desired renormalized coupling we must, like in section IL.5, push the
analysis up to third order graphs for the 3 function. These discrete equations for
A and a are:
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1 . .
SXi = — o log M2 + 3 log M (s log M — f33) + O( OgZ) FA2[0(e= =Dy £ O(e)]
(111.4.19)
Sa; = v2log MAZ (1 + O(N;) + O(e= =) + O(e™) (I11.4.20)

where v = (2N — 1)/(27)? is a numerical constant corresponding to the graph
By in Fig.I1.5.1; (3 is again (as in the planar ¢} theory, see lemma I1.5.2) the sum
of two contributions v3 = (N — 3/2)/7? which corresponds to the analogue of the
graph @3 in Fig.I1.5.1, and 63 = 279, which corresponds to a reaction of the wave
function renormalization on the coupling constant flow similar to the one due to
the graph @5 in Fig.IL.5.1.

Only the discrete flow of the mass is significantly different from the “wrong
sign” planar ¢} flows. Indeed by parity considerations the mass renormalization
is only logarithmically divergent. The leading contribution is given by a tadpole
with mass counterterms insertion (Fig.IT1.4.1); the corresponding numerical factor
is 1 = —(2N —1)/m. If we used a resummed propagator with running mass m;,
the corresponding equation would be §m; ~ —yym;\;log M + O()\?); but since
we leave the mass counterterms as interaction vertices we find an equivalent but
slightly more complicated discrete flow equation, which is [IM2]:

= (A zp: §m;CG — 1)L+ O0\) + 0(e= PN+ 0(e™)  (I11.4.21)
i+1

d2 _
C(k) = /p—f(e—(P2+mi) — 1) (e M M) _p) (I11.4.22)

In both points of view, if we define:

5m7;

v=—71/72 = l1m lim =(N-1/2)/(N —-1) (I11.4.23)

—00 p—=00 My 7,62

‘Sml ~ —J1 which is consistent with the ansatz

we have the approximate behavior
(IT1.4.16). More precisely we can show that equatlons (I11.4.15-16) lead by an easy

induction to the behavior:

Xi = [(—B2log M)i + (B3/B2) logi + C + f(i)] (I11.4.24)
m; =m.i~ (1 + g(i)), i > const - C'/(—F2log M) (III.4.25a)
K '<mi/m<K, i < const - C'/(—[ log M) (I11.4.25Db)
1%
| > bay] < Ksup{X;, M~} Ja; — 1] < 1/2Vj (I11.4.26)
j=i+1

for some large constant K, with |f(i)| < 1/2 and |g(i)| < 1/2. All these behaviors
assume that C' is chosen sufficiently large in (I11.4.15), and they are sufficient to
verify the convergence of the usefully renormalized phase space expansion.
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It remains to relate precisely the ultraviolet limit obtained in this way to the
BPHZ conditions, which are:

Aren = S3H(C,m)(0,0,0,0) (T11.4.27)
(Mren) ™ = S5 (C,m)(0,0) (I11.4.28)

or . d
(Gren = (Myen) [—z%)sg(C’, m)(p)|p=o (I11.4.29)

One can check then that the parameters C and m in (I11.4.15-16) correspond
to an other renormalization scheme (which in terms of the Schwinger functions is
implicit rather than explicit like BPHZ). More precisely, like in section I1.5, we
can study the map from (C, m) to (Aren, Mren ), and prove that for m close to myen
and ReC' large enough, we can obtain any prescribed value of (Apen, Myen) With
Aren in a disk C'g. The resulting theory is analytic in this disk and again Taylor
remainders at large order may be evaluated by the combination of the large order
estimate of part II and the convergence of the phase space expansion, so that the
theory is the Borel sum of its perturbative expansion.

This result is particularly welcome for this model, which is a full fledged
field theory. Indeed it can be called upon to check that the ultraviolet limit
constructed in this way is universal (independent of the technical details of the
construction) and it allows a quick proof of the O.S. axioms: since different reg-
ularization schemes preserve different subsets of the axioms, it is easy to check
the corresponding axioms. But by the Borel summability result, the theory con-
structed using these different regularizations is the same, hence verifies all axioms!
For instance we can use the cutoffs (II1.4.6) to check every axiom except reflection
positivity (OS3 in section 1.2), and a lattice cutoff to check this last axiom. Indeed
lattice regularization preserves reflection positivity with respect to the symmetry
hyperplanes of the lattice, which become denser and denser as the lattice spacing
tends to zero; in the limit reflection positivity is recovered with respect to every
hyperplane (here in dimension two these hyperplanes are simply straight lines).

B Three dimensions

In the previous sections the technique of phase space expansion appears as
a compromise between the perturbative expansion, which allows rather precise
information on the model but diverges, and the functional integral which is a
beautiful resummation of this expansion, but does not allow detailed estimates.
However this main idea can be used of course in a more general context, and in
particular phase space expansion can be used as a compromise between functional
integration and an other expansion scheme than the ordinary perturbative one;
what seems however necessary up to now for this method to work is the existence
of a small parameter which, when tending to zero, drives the theory towards a
gaussian one.

The Gross-Neveu model in three dimensions is an example of such a situation:
it is no longer renormalizable in the ordinary perturbative sense but it is renor-
malizable in the sense of the 1/N expansion, as is explained below. Furthermore
its heuristic renormalization group analysis shows a nontrivial fixed point which
is close to a gaussian one if N, the number of colors, is big enough. This fixed
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point may be considered the remnant of the two dimensional asymptotic freedom
of the model. Rigorous construction of the model using the phase space analysis is
in progress [ICFAVMS], and we will discuss briefly here the content of the model,
the expected results and the technical difficulties to overcome.

The starting point is the same lagrangian density than for the two dimensional
model (I11.4.1):

S ) = HO™1% — (A/2N)(: s 1) (IT1.4.30)

with C~! = (ia 0 + m). The main change is that we are in a three dimensional
space, so we can choose the Fermi fields to be 4 component spinors, and use the
first three of the usual 4 by 4 gamma matrices of four dimensional space time. The
usual 75 matrix may be used also to introduce chirality in the model. An other
change is that the parameter NV, the number of color species, will be taken large,
so that it is convenient to normalize the coupling constant as in (II1.4.30).

One can no longer treat the model at a purely perturbative level like in the two
dimensional case, because perturbation theory is not renormalizable in this case.
To avoid an ill-defined fermionic integration one uses therefore the well known
method of Matthews-Salam, in which the Fermi functional integral is exchanged
for a bosonic integration over an auxiliary field o. Formally one writes at each
point:

e%(djw)? _ /e—(1/2)02+\/%(71/”/1d0- (111431)

and integrating over the Fermi fields, the partition function of the system becomes:

/ e~ i 4myu=O/2M) 600 T dh ()i ()

2 A
= /e_(l/Q)U —VANTrCo det(C~1 + 4/ NO’)N H do(x) (II1.4.32)

(the partial Wick ordering is responsible for the extra linear term in o; without it
the measure would blow up as N — o). This formula has now a natural gaussian
limit as N — o0o. Indeed we can write:

A A
-1 N _ —N N
det(C™" +4/ —NO') (det C)™ det(1 + 4/ NCO’)

~ ¢VANTrOo—(A/2)TrC0oCo+0(1/VN) (I11.4.33)

Therefore up to a normalization the limit N — oo leads to the natural gaus-
sian measure in o:

/ e~ (120" =T CoCo T dor () (I1.4.34)

It is important to remark that this measure is no longer a simple local mass term
in 02 (a 6 function in x space); the non local correction is given by the bubble
graph TrC(z — y)C(y — x). To define more rigorously this N — oo limit we have
to worry about ultraviolet finiteness and about the positivity of the corresponding
gaussian measure, which is not obvious because the bubble graph is negative (in
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field theory it is a well known fact that fermionic loops have a minus sign when
compared to bosonic loops).

An ultraviolet cutoff is first applied to the fermionic propagator C' which is
therefore changed into C), like in (II1.4.6). The covariance of the measure (I11.4.34)
for the o field (corresponding to the cutoff bubble graph) is:

LO(p) = (L+ Apmy(p)) ™" (IIL.4.35)
with a well defined value:
1
T,(p) = 2 /TTCp(k)C’p(p — k)d*k (IT1.4.36)

Now for a correct choice of A\, as p — oo this covariance is positive so that the
corresponding gaussian measure is well defined. In order to see this, it is convenient
to rescale first the o field by \/A,0 — o so that A\, disappears from the interaction.

The o covariance becomes and the constant term )\p_l is chosen so as

1
A;l +7,(P) ’
to control the zero momentum value of m,, which is negative. More precisely if

A

we define )\f)ff = W:rp(o)’ and ask /\sz to have a positive limit as p — oo, the

covariance becomes )
(/\fo)_l + Tren(p)

The advantage is that ..., (p) is now positive, hence for positive )\zf ! the covari-

ance is of positive type. It is easy to check that the corresponding asymptotic

(I11.4.37)

behavior of A, as p — oo is:

Ap = (e7h+ MP )t (TT1.4.38)

l—M 1

In this way the limit N = oo is a well defined gaussian theory in terms of the o
field.

This gaussian limit and the formula (II1.4.33) is the correct starting point for
the construction of the theory, and the expansion scheme will be based on the 1/N
rather than the perturbative expansion. To factorize the gaussian piece one uses
the standard notation:

K"

dety1(1+ K) = det(1 4 K)e Tr K+t (10" 45 (I11.4.39)

and one introduces a coupling constant in the form /\pgz where A, behaves as in
(II1.4.38) up to 1/N corrections and g, should converge to 1 as N — oco. Then a
normalized Schwinger function, with test functions f;, g; is given by:

SA,p(fla'“vfp;glv' agp /1/) fl 1/)( ) 'w(gp)eApgifA(:d;w:)Qdup(l/;aw)

= 7 | detfig o) deta(l+ K, YNdur, (o) (I11.4.40)

where K, is the regularized kernel:

K, (z,y) = %op@: — y)A(y)o(y) (IT1.4.41)
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and
Lpp) = (A + g2m(p) ™! (I11.4.42)

The power counting using the covariance of the o field is now better than for
the initial perturbative expansion. Apart from vacuum diagrams, the only diver-
gent diagrams are those with one o external field (quadratically divergent), two
Fermi or ¢ fields (linerarly divergent) and two Fermi fields plus one o field (loga-
rithmically divergent). Diagrams with three external o fields, although apparently
divergent are in fact finite because of the vanishing of the trace of an odd number
of v matrices. These renormalizations basically correspond to the renormalization
of the initial parameters (masses and coupling constant) of the model.

Therefore rewriting the theory in terms of the o field and absorbing the first
term in the dets in the definition of a gaussian measure for this field has changed
the theory from non-renormalizable to just renormalizable. In terms of the initial
perturbative series, this operation is simply the resummation of all chains of bubble
diagrams (see Fig.I1.5.4).

To proceed further towards the rigorous construction of the theory one has to
introduce a momentum slicing, a phase space expansion and effective parameters
for the theory (II1.4.40), and to analyze the corresponding renormalization group
flows. These flows are controlled as before by a few leading order graphs. The
corresponding fixed point is not exactly gaussian but close to a gaussian for N
sufficiently large, and the definition of the corresponding renormalized parameters
is not particularly difficult; we refer the interested reader to [Sen|. Nevertheless
the construction of the model is more difficult than for the previous examples
because there is less positivity in terms of the bosonic o field. This point is of
great constructive importance and has no counterpart in the ordinary standard
(perturbative) analysis, so let us try to sketch it briefly.

The interaction of the theory in the o field point of view is the detz. We
remember that for bosonic theory there is a stability problem at large fields, which
show up in the definition of the functional integral and (in a phase space expansion)
in the domination process. The interaction dets(l + K,) is much worse than a
positive ¢* interaction in this respect. Indeed the standard bound on a dets is:

1
log(det3(1 + K)) < 5Tr(K2 + KK*) (I11.4.43)

TrK? corresponds to the bubble graph (with two external o fields) and is negative.
But Tr K K* is nothing but the bubble graph with both external fields at the same
point (see Fig.I11.4.2). Therefore we can rewrite (111.4.43) as:

| dets(1 + K)| < ez (IIL.4.44)

where 7., stands for the renormalized bubble graph. On the other hand the
functional bound on the interaction is of the same order than the positivity of the
gaussian measure (remember that in (II1.4.42) A, is adjusted so as to cancel the
zero momentum value of 7(p) so that apart from a remaining constant, the posi-
tivity of the gaussian measure is exactly that of 7., (p)). Therefore the ultimate
positivity of the theory is much more marginal than in previous models, and this
leads to many technical complications.
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In particular a new feature of the expansion is the decomposition of the func-
tional integral according to whether the mean of the o field is large or small. In the
small field region, the det3 can be expanded; in the large field regions the bound
(IT1.4.44) is applied and compensated by the positivity of the gaussian; further-
more a small factor per cube is earned from the remaining piece of the gaussian
(corresponding to the term /\zf Fin (II1.4.38)). The cluster expansions are not
performed inside the large field regions, which can be treated as a single block.

However in addition there are also some important technical changes at the
level of the interpolation parameters corresponding to the vertical and horizontal
cluster expansions. In the ¢* problem of section III.3 there was separate positivity
of the gaussian measure and of the interaction, so it was enough to write indepen-
dent interpolations on both of them which preserved separately the positivity of
each of them. Now by (II1.4.34) it is only the combination of the dets interaction
and of the gaussian measure which is positive hence the horizontal and vertical
expansions cannot be fully independent, but must be defined in such a way that for
any value of the interpolating parameters the combined interaction and gaussian
measure remains positive. This is possible, but requires an inductive definition
of these parameters, which takes into account already derived connections. We
remark that like for the horizontal tree like expansion, it seems a general prop-
erty that inductive interpolations which are minimal in the sense that they never
build redundant connections are also optimal from the point of view of preserving
positivity requirements.

This ends our brief description of the Gross-Neveu model in three dimensions,
for which a detailed construction should be soon available [ACFdVMS].
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II1.5 The ultraviolet problem in non-abelian gauge theories

I see nothing wrong with it because any nontrivial idea
18 1N a certain sense correct.
— A. M. Polyakov, Gauge Fields and Strings.

A) Introduction

The efforts to understand better renormalization theory should culminate
in a rigorous solution of the ultraviolet problem for non-abelian gauge theories.
Most physicists are convinced that the problem is well understood and void of any
surprises, because of its asymptotically free character. However there is only one
rigorous program of study of this problem completed so far, the one of Balaban
[Ba2-9]. This program defines a sequence of block-spin transformations for the pure
Yang-Mills theory in a finite volume on the lattice and shows that as the lattice
spacing tends to 0 and these transformations are iterated many times, the resulting
effective action on the unit lattice remains bounded. From this result the existence
of an ultraviolet limit for gauge invariant observables such as “smoothed Wison
loops” should follow, at least through a compacity argument using a subsequence
of approximations; but the limit is not necessarily unique. Clearly this is a point
which requires further work.

Although very impressive, Balaban’s work reaches the limits of human com-
municability, partly because the use of the lattice regularization is the source of
many technical complications and partly because the results are scattered over
many publications. Also it does not address the problem of constructing the ex-
pectations values of products of the field operators in a particular gauge (the
Schwinger functions), because these are not gauge invariant observables. These
remarks also apply to the related program of Federbush [Fed2-7] (an other impres-
sive task which, like European common market or the Channel tunnel, is scheduled
for completion by 1993). It is true that physical quantities should be gauge in-
variant. Nevertheless the gauge fixed framework is obviously the most convenient
for perturbative computations, and one can consider in fact that the ultraviolet
problem for the Yang-Mills field theory is not yet understood until this point is
clarified.

In collaboration with J. Feldman, J. Magnen and R. Sénéor, we tried also our
own study of this problem with the phase space method described in this book.
Our ambitious and perhaps naive goal was to construct the Schwinger functions
of the field e.g. in the Feynman or Landau gauge, with an infrared cutoff. In
spite of hard work, at least in term of the hours spent, we did not succeed. The
functional integrals obtained always lacked sufficient positivity for control. For
long we hoped that at some point in the construction the phase space analysis
would “kill” the related Gribov problem, or “chop” it into manageable subpieces,
but in the author’s present opinion this hope was unfortunately ill-founded.

We do not have at the moment many intermediate results of such obvious value
that we owe to explain them to the community. Nevertheless at the perturbative
level we are convinced that our approach, which is based on a gauge breaking
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regularization, can be used to recover the results on renormalizability of the Yang-
Mills perturbation theory, without the use of dimensional regularization (which is
not a useful constructive device up to now), and with explicit uniform bounds at
large order such as those of part II. Furthermore with this method, one can rewrite
the bare or renormalized series as an effective series with useful renormalization at
the level of power series in the renormalized coupling like in section II.4. At this
level of formal power series the running coupling constant seems clearly to display
asymptotic freedom.

At the constructive level, the bare theory with cutoff that we consider is well
defined (and this is somewhat non-trivial, since it depends on the shape of the
ultraviolet cutoff that we use). But whether the ultraviolet limit exists remains a
widely open question. Also if it exists it is not clear that it obeys the standard
(perturbative) renormalization group computations: in [DeZw] it is claimed that
for the theory in the Landau gauge this is not the case at least for the two point
function. Clearly this surprising claim deserves better attention. In order to
reconcile it with Balaban’s work, and the standard “Monte-Carlo” wisdom, one
could perhaps imagine that only gauge invariant observables behave according to
the standard renormalization group.

In conclusion it is the goal of this section to explain our tentative approach
to the Yang-Mills ultraviolet problem, and to summarize the little we know about
the Gribov problem, in relation to our point of view.

B) The model

We consider the pure Yang-Mills theory with an infrared cutoff, which we
never try to lift. This cutoff may be imposed on the propagator, or we could
consider the theory on a finite volume with some boundary conditions, or on
the sphere S*, the torus A = ]R4/ Z" or an other compact Riemannian four-
dimensional manifold. Naive infrared regularization breaks gauge invariance, but
compactification of space and the choice of a particular principal bundle with fiber
G defines an unbroken group of gauge transformations. For instance in the case
of the torus with the trivial SU(2) bundle, the gauge transformation are simply
the functions © — g(z) from IR* to G which are periodic with period lattice Z*.
The momentum space correponds to discrete Fourier analysis on the dual lattice
A* = Z*. Moreover the constant fields or the zero mode in Fourier space is deleted
in all our functional integrals, hence there is no infrared problem.

For the pure SU(2) Yang-Mills theory the vector potential is a field Afj, u =
1,...,4,a=1,2,3 with Lorentz (greek) indices and Lie algebra (latin) indices (the
group is noted SU(2) and the algebra su(2)). Geometrically A is a connection
on the considered principal bundle; again in the case of the trivial SU(2) bundle
one can consider that each A, is simply a function with values in su(2). Our
conventions are those of [IZ], which we recall briefly; later to simplify the notations

°_ A%, with t, =

(i04/2) where the o’s are the three usual hermitian Pauli matrices. With this

convention the covariant derivative is D,, = 9, — A[4,,,.]. We have Trt,t, = —%®.

we will forget indices most of the time. We write A = )

The field curvature is:

Fup = (0,A, — 0,A,) — \[A,, A)] = (DA A — A4, A]) (ITL.5.1)



189

A being the coupling constant; the second notation is a condensed one in which
indices are omitted (and JA is the exterior derivative). Remark that in the three
dimensional su(2) space, the commutator is a wedge product: [A%, A2] = ¢ £ A% AL,
The pure Yang-Mills action is (for Euclidean canonical metric on the flat torus the
raising of ”Lorentz” indices is trivial so that F),, = F*"):

1 4 v 1 4 a va
—§/Ad «TrF,, F" = Z/Ad xza:FWF“ (I11.5.2)

To simplify, we define a scalar product < A, B > on space time tensors of the
same type with values in the Lie algebra A and B, by the convention that a trace
is taken over all correspondent space time indices and minus a trace over group
indices, so that it is positive definite with a factor 1/2 in component notation.
We also write simply A2 for < A, A >, and with this convention we can write
the action as % i) A F 2. We distinguish between the quadratic, trilinear and quartic
pieces of F'?, writing:

F? = Fy + AF5 + A\’ Fy (I11.5.3)

This action is invariant under the gauge transformations:
A— A9 (A9, =gAg +0,u9-97" (IT1.5.4)

In what follows these gauge transformations are limited to a particular topological
sector, for instance the functions from the compact space to G. It is often useful to
consider the infinitesimal gauge transformations ¢ with values in the Lie algebra,
which are tangent to the gauge transformations; the corresponding formula is:

A— A% (A9, = A, + Dye (I1L.5.5)

where D = 0 — A[A, ] is the covariant derivative. Our starting point is the Yang-
Mills theory in the Feynman gauge. In this gauge there is an additional factor
e~ <0A4.0-A4> which is the gauge fixing term, and a Faddeev-Popov determinant
which is det 0.D. This determinant can formally be written in terms of ghosts

fields  and 7 as
eauﬁa(auna_AﬁabcAu,an) (111.5-6)

The propagator for the gauge and ghosts fields are respectively

] uéab 5ab
“].T , e (ITL.5.7)

2
and the Feynman rules are exactly the standard ones that can be found in [IZ]
(after rotation to Euclidean space).

The class of ultraviolet cutoffs we consider is defined as follows. k is a fixed
function which is 1 near 0 and decreases at infinity. For instance it could be an
exponentially decreasing function or a C§° function, which is 0 for |p| > 2 and is
1 for |p| <1 (the C§° character is perhaps not essential but it should be such that
the slices built out of it (see (III.5.10) have good spatial decay and it might be
interesting to have also good momentum conserving properties).
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Then we define our scaled momentum cutoff x, to be:
kp(p) = (1/2)[k(apM ™) + k(pM~")] (I1L.5.8)

where « is a small constant (this unusual form leads to a stabilizing A% coun-
terterm, as shown below). We can consider the well defined normalized gaussian
measure in A, du,, whose propagator is:

C,= %M% (I11.5.9)

and create the first momentum slice by writing, as before:
Cr=0C,—Chpy (I11.5.10)

The same cutoff and slicing is used for the ghost propagator. We will use the
notation
det,(A) = e~ OufacarcAubnedy (75 1) (II1.5.11)

where dv, is the formal free measure for the anticommuting fields 7 and n with
propagator 6ab;—§. This notation is useful, but the true rigorous definition of the
corresponding regularized determinant det, is in fact as in the previous section on
the Gross-Neveu model, through convergent power series. There is indeed both
an ultraviolet and an infrared cutoff, so by an analogue of Lemma III.4.1, for any
smooth sample field A the power series for the determinant det,(A) indeed has
infinite radius of convergence.

Corresponding to the slicing (II1.5.10) there is an orthogonal decomposition
of the field A” which is the random variable associated to du, as A, = AP + A,
and of the ghosts fields 7, = #” + 7,-1, n, = n” + n,—1, but this is again only a
convenient notation for the manipulation of determinants.

From standard renormalization group analysis we learn that in order to get
a finite non trivial renormalized theory at the unit scale of our finite box, we
should use a bare coupling constant which has the usual asymptotic behavior with

p implied by asymptotic freedom. Hence a good ansatz for the bare coupling A,

should be: .

Ao = Ba(LogM )p+ B3/ B2 logp + C

where C is a large constant, and J; and (3 are the usual first non vanishing
coefficients of the [ function, whose numerical value is given in standard textbooks
like [IZ]. Then one hopes that the renormalized coupling constant A,.,, which
should be defined as the last one in a sequence of effective constants, is finite and
arbitrarily small as C becomes arbitrarily large by the same mechanism than in
section I1.5 (if perturbative renormalization group analysis turns out to be correct).

One could believe that the bare theory to start with is simply obtained by
6<>\F3+>\2F4).

(I11.5.12)

multiplying the well defined measure det, du, by the interaction terms
However first it would not be obviously well defined since even with a cutoff the
cubic term Fj3 is not positive and to bound it would require extracting the full
positivity of the gaussian measure. Second, the true bare theory must be more
complicated to respect gauge invariance in the limit p — oco. Indeed our ultraviolet
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cutoff breaks gauge invariance. These gauge breakings must be compensated by
appropriate gauge-variant counter terms. In fact only the relevant and marginal
counterterms must be included because they are the only ones whose effect on
finite scales does not vanish as p — oo. We show now how to compute these
effects.

C) Computation of the counterterms due to the ultraviolet cutoff

Our ultra violet cutoff does not break global SU(2) or Euclidean invariance
(small Euclidean breaking effects nevertheless occur due to the infrared cutoff; for
instance in the case of a torus there exist such effects due to the lattice structure of
A*, but they are tied to the unit scale and do not need counterterms). Therefore
the only new relevant or marginal operators that we should consider are —TrA,A,,,
(—-TrA,A,)?%, (—TrA,(-A)A,) and —Tr(9,A,)? which we abbreviate respectively
as A%, A* A(—A)A and (0A)? (recall the convention that traces are definite
negative). This is only true for SU(2) theory; for an SU(N) theory there would be
a longer list of operators to consider and the analysis would be more complicated.

In fact our gauge breaking cutoff also disturbs the magic relation Z57, =
Z§ which relates the multiplicative renormalization of F, F3 and Fy in F? and
expresses the fact that up to a rescaling of A only the coupling constant A is
renormalized [IZ]. To correct this problem, using the possibility of rescaling A, we
need only to introduce a single counterterm, for instance of the type Fj.

Therefore the counterterms that we introduce are:

LOT _ g=ap [ A=, [ A% —c, [ A(=2)Ad, [, (94)" ¢, [, F* (IT1.5.13)

The relevant counterterm b, [, A% must be fine tuned exactly to have a renor-
malized mass which is zero. This is the same problem than fixing the critical bare
mass in infrared ¢F and should be solved either by a fixed point argument as in
section III.3 above or using a full renormalization of the two point function (and a
one particle irreducible analysis) as in [FMRS5]. For the marginal counterterms,
an analysis to lowest order in perturbation theory is in fact enough for our purpose
(because of asymptotic freedom, further orders again should give no contributions
to finite scales in the limit p — o). We obtain:

Lemma IIIL.5.1
ap ~aXy, b, ~bMP*PAZ ¢, edl d,~dN), e ~e,.  (IIL5.14)

Furthermore by choosing the cutoff of the form (II1.5.8) with « large enough
(depending on the shape of k), the coefficient a is strictly positive*.

Proof We recall the Feynman rules for the pure SU(2) gauge theory in the Feyn-
man gauge [IZ]. The propagators are given in (ITI1.5.7). The interaction vertices are

* It is not clear whether a cutoff for which a would be negative (or zero)

can be used in a constructive way. The answer may depend on adding irrelevant
counterterms of higher order generated by the cutoff, which may stabilize the
theory. The analysis of globally invariant such terms becomes more and more
complicated as the order increases and we will therefore not try to explore this
possibility here.
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of three kinds. For simplicity we always forget to write the overall multiplication
factor (of 27) and the § function which expresses momentum conservation which
equips them. These three kinds of vertices are then pictured in Fig.II1.5.1.

We concentrate on the computation of the A* counterterm, which is the most
interesting, and include also the computation of the A% counterterm. The other
ones are less interesting and left to the reader.

At one loop, which also means at order ¢g* in perturbation theory, there are
4 graphs which may contribute to the A* term. They are pictured in Fig I11.5.2
and called G, G2, G3 and G4. To compute their contribution, we may assume by
symmetry that in all four external legs, both the space time and group indices are
equal to 1.

a) Computation of Gy

The graph is obtained by applying 4 derivatives aiA} on (1/2")(—F?/4)%. The
result is 3(0%F?/4)? where derivatives are taken with respect to A}. The only
non vanishing pieces come from the derivatives acting on the commutator in F,
hence 9?F? /4 gives (1/2)(0F)?. Moreover we have 0FS; = ec”’[A%ééal — Ab651],
where ¢ is the usual antisymmetric tensor. But remark that if « = = 1 the term
vanishes. Hence when developping the square (1/2)(0F)? the cross terms vanish.
Therefore this square gives (ECIb)Q(A%)Q(SM, 3 # 1. There are now two possible
Wick contractions, a sum over three values (2,3 and 4) for # and a sum over 2
values (2 and 3) for b. Collecting all factors we obtain a positive coefficient 3.2.3.2
= 36 in front of the integration over the loop momentum of the two propagators
of Gl.

b) Computation of G.

We apply 4 derivatives on (1/3!)(—F?/4)3. The result is —6(9?F?/4)(0F?/4)?
where derivatives are again with respect to A}. The term in 9*F? /4 is the same as
before, hence gives (GCIb)Q(A%)Qéal, B # 1. But we have now two trilinear vertices
in 0F?/4 hence terms with derivative couplings; remark that a partial derivative
0, can be replaced by —ik,. The computation of this term leads to two identi-
cal vertices, one which gives elm”AZ [01 A} — 0,AT'], and the other with m,n, u
respectively replaced by p, ¢, A. In the Wick contraction schemes we can first con-
tract to form the line between these two trilinear vertices. Since the two half legs
of the remaining vertex bear the same index 3 # 1, a tedious computation gives
that the only term compatible with future contractions is (e'™")?(A")?[4k] + k7).
Using Buclidean symmetry, this is equivalent to (¢'™")?(A7")?*[5k7]. Contracting
with the remaining vertex, we have now as before two possible Wick contractions,
a sum over three values (2,3 and 4) for 5 and a sum over 2 values (2 and 3) for b.
Collecting all factors we obtain a negative coefficient —6-2-3-2-5-k% = —90- 4k2,
again equivalent by Euclidean symmetry to 90k? in front of the integration over
the loop momentum of G,
c¢) Computation of G5

We apply 4 derivatives on (1/4!)(—F?2/4)*. The result is +(9F?/4)* where
derivatives are again with respect to A}. The term in dF?/4 gives the same
trilinear vertex as before, hence gives ¢! A% [0, A7} — 9, AT"], In the Wick con-
traction schemes we can first choose one particular leg of vertex 1 to form a first
line between two trilinear vertices. To choose the vertex (2,3 or 4) to which this
leg contracts gives a factor 3. After this contraction has been performed, the
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line equipped with two not yet contracted fields gives a term (e'™")?[2kF(A}")* +
k2 (AT)? = 3k1k, AT AT?]. Here we can assume p # 1. We can now contract once
more to create one line between the two remaining vertices, and this can be done
in all possible ways, hence gives a different term, which is (e'™")?[4k7(A7")? +
k2 (AT)? — 6k1ky AT AT + by AP AR We can assume that p # 1 in the first
three terms and that g4 = A = 1 is exluded in the last one. It remains to contract
together both expressions. We have as before two possible Wick contractions, a
sum over three values (2,3 and 4) for p and a sum over 2 values (2 and 3) for m.
After collecting all factors, taking into account Euclidean symmetry we obtain a
positive contribution 9-12- k% + 10+ 12k?k2 in front of the integration over the loop
momentum of G3. Converting it into units of (k%)2, we find a final combinatoric
factor 9-12/8 +10-12/24 = 55.5.

d) Computation of G4

We apply 4 derivatives on (1/4!)(F.P.)*, where F.P. means the Faddeev-Popov
term ,,7jq(D,n)q, with D the covariant derivative. The result is (917ja€ap1mp)*.
The combinatoric is easier. We obtain a factor 6 for the Wick contractions, a
factor 2 for summations over latin indices and a minus sign corresponding to the
fermionic loop, which comes from reordering correctly the anticommuting fields n
and 7j. Hence the contribution is —12 - k{ in front of the integration over the loop
momentum of G4. Applying the same conversion rate, we obtain in units of (k?)?
a final combinatoric factor of —1.5.

Remark that all 4 coeficients add up to 0. This is a particular case of the
famous miracle of renormalizability (at one loop...) of four dimensional gauge
theories.

Let us perform now a similar analysis for the A2 counterterm. There are three
graphs contributing at order g2, pictured in Fig IIL.5.3.

The first graph, G, gives 00F?/4 = (1/2)(0F)? = —(1/2)(e**“[A$b,1 —
A¢6x1])? which is non zero only for v # 1. The contribution is -6 in front of the in-
tegration over the loop momentum. The second graph, G, gives 09(1/2)(F.P.)* =
(OF.P.)? = (01Ma€ap1mp)?. The contribution is positive because the minus due
to the fermion loop is compensated by the 2 = —1 coming from the deriva-
tives on the fields. The contribution is 2k? = (1/2)k? in front of the integration
over the loop momentum. The last graph, G%, is given by 99(1/2)(F?/4)? =
(e A0 AT" — 8, AT'])? (which is non zero only for p # 1). The contribution is
18k% = (9/2)k? in front of the integration over the loop momentum.

The result for the A% term is then (-64+1/2+9/2)=-1 times the loop integra-
tion.

To complete the Lemma, we want to study the sign of the A* counterterm.
Let us explain why it is important to us. Our strategy is to cancel explicitly the
A* and A? contributions due to the gauge breaking character of our ultraviolet
cutoff by appropriate counterterms. Remark that strictly speaking, only the A2
contribution diverges as p — oo and requires a counterterm (for the A* term
the coefficient of the divergent piece is 0, as computed above). However this A2
counterterm is positive (since the contribution is negative, see the -1 above). This
is dangerous for stability estimates. We will use the (finite) A% counterterm to
control this dangerous A2 term and stabilize the theory. But this requires that we
use an ultraviolet cutoff such that the A% counterterm is negative, hence such that
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the total A* contribution induced by the cutoff is positive. As a consequence of our
expansion the leading contribution is the one-loop contribution; we want its sign to
be positive. We show now that this is possible provided the covariance defining our
ultraviolet cutoff is taken to be the arithmetic mean of two covariances, one with
cutoff K - M?¢ and the other with cutoff (1/K) - M?/, K being a large constant.
The case (I11.5.8) is then similar, with a playing the role of K2, up to a redefinition
of the unit scale.

Let k(p) be the ultraviolet cutoff function in momentum space. The phe-
nomenon that we will discuss here is universal, and does not depend of the partic-
ular form of k. Using the coefficients computed in the preceding section, the one
loop contribution to the A* term is, for a single cutoff x,(p) = k(pM ") (all our
integrals are infrared regularized and ”finite” means finite as p — o0):

d*p _ _ — .
/ p—436772(pM 7Y —90n3 (pM ") 4 54n* (pM ") = 0-p + finite terms (II1.5.15)

For the arithmetic mean of two cutoffs, the corresponding contribution is:

2

/ d'p [% (R(KpM ™) + k(K ~'pM~"))
~ 2 (w(KpM ) + w(K'pM 7))’ + ?—2 (K(KpM~*) + K(K‘IPM‘”)Y‘}

8
(I11.5.16)
But we have the following rules for any reasonable cutoff (and certainly for
the ones we use), and for integers ¢ and 7:

d4
/ff( YK -pM™?)=—log KM™" 4+ finite terms if ¢ > 1 (IIL.5.17)
p
and, if K >>1,M > 1:

d4
/—f( UK -pM=P)(k"(K~" - pM~P) = —log KM =" + finite terms if ¢ > 1
p

d*p
/—( UK-pM~P)(k"(K~1-pM~P) = —log K~ ' M ™"+ finite terms if ¢ = 0,7 >

Pt
(IT1.5.18)
As a consequence the one loop A* contribution behaves as

(—36: 2 + 90£< 6_3 1><6 14) log K + finite terms = 2.25log K + finite terms

(IT1.5.19)
where "finite terms” now means terms which are uniformly bounded both as p
and K tends to +00. Therefore taking K large enough (depending on the details
of our cutoff, which are responsible for the particular value of the finite terms) we
can always achieve our goal of a positive total A* contribution, hence of a negative
stabilizing counterterm.

In conclusion our starting ansatz for the bare theory is:

e?rdp,(A)dv,(n,n) (IT1.5.20)
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with
_ 1 _
Jy = J(Ap, Tipsnp) = _i(Ap/AF3+/\i/AF4)_)‘pau77a€abcAu7bnc+CT (I11.5.21)

with A, as in (IIL.5.12). This starting point is now clearly well defined because
we have both finite volume and ultraviolet cutoff. Hence the sample fields are
smooth. At large field the exponential of the interaction is clearly bounded for
any sample field, in every direction of the configuration space. This is true because
the leading terms at large field are the A* and Fj terms which, thanks to the sign
of the A% term, are respectively positive definite and positive (the determinant
det,(A) may be bounded at large A for instance by an analogue of (II1.4.43),
hence by a quadratic term). Remark however that it is only for fields of order A1
that the A% term provides convergence, so this term does not confine the field in
the true perturbative region (A << A~1),

D) Perturbative results

For perturbative results, we can expand the e’» term in (II1.5.20) as a formal
(bare) power series, which integrated with the gaussian measure dyu,dv, gives a
bare perturbative expansion. Then we must rewrite this bare expansion as an
effective expansion following the method of section II.4. However perturbative
results are limited to statements about formal power series, and we cannot in this
context justify asymptotic freedom. In particular we must abandon the ansatz
(II1.5.12) and consider the coupling A, simply as the parameter of the series. The
violations of gauge invariance due to the ultraviolet cutoff are still of the form
(II1.5.13) but we can no longer use asymptotic freedom (II1.5.12) and Lemma
IT1.5.1 to argue that for instance only the one loop contribution has to be included
in the A* counterterm. For perturbative results we need to express ap, by, Cp, dp
and e, as full formal power series in A,, computing each order as is done explicitly
above for the one loop order. However there is an advantage: we have no longer
positivity requirements for the coefficient a in (II1.5.14) hence we are no longer
limited to cutoffs of the type (II1.5.8). We can use any shape we want for the
ultraviolet cutoff function.

If we compare to the case of ¢} treated in section IL.4, there is one main addi-
tional problem. We want to show that the resulting usefully renormalized theory
has not as many runnning parameters as the naive number of relevant or marginal
operators (which, including non-Euclidean invariant ones, is in the order of the
hundreds even for pure SU(2), since the field has twelve components). First by
Euclidean and global SU(2) invariance of the slice cutoffs we show that there is no
divergence associated to subgraphs whose external leg indices correspond to non-
Euclidean or non global SU(2) invariant operators. Therefore the corresponding
subgraphs do not require renormalization at all, and in particular no useful renor-
malization; no running parameters are therefore associated to the corresponding
operators.

Still among the coefficients of the remaining operators in the field A, which are
A% A% (0A)2, Fy, F3, and Fy (A(—A)A being a combination of Fy and (9A)?) we
need some relations to hold in order to show that the effective parameters at scale
i reconstruct a theory similar to (II1.5.20) but with running parameters. There
are also relations to be checked involving the divergent operators with ghosts; the
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ghost wave function renormalization, which we abbreviate as 70?1 and the ghost-
field coupling in (III.5.11), which we abbreviate as 07An (other ghost terms, in
particular the relevant ghost mass renormalization are zero by unbroken symme-
tries).

Since a wave function renormalization is allowed both for the field and the
ghosts, there are two main relations to be checked, which up to a rescaling of the
fields express that only A, the coupling constant, is renormalized; these are the
two relations (12-126a) of [IZ], which we prefer to rewrite (with hopefully slightly
more logical notations) as:

Zi 7y Zy
Zs  Zy
where 75, Z3 and Z, are the multiplicative coefficients of Fy F3 and Fy, and

(I11.5.22)

Z, and Zs are the corresponding multiplicative coefficients of the ghost-ghost
wave function term 79%n and ghost-ghost-field coupling 91An. Since in the initial
expression the power of the coupling constant is equal to the degree of the term
minus two, relations (I11.5.22) automatically express this rule and prove that up
to a rescaling of the fields there is only a single coupling constant renormalization.

Relations (II1.5.22) were initially proved “by hand” (see e.g. [LZ]) using
so called Slavnov-Taylor identities [Sla] [Tay]. The modern method is by use of
BRS symmetry [BRS], using dimensional regularization, which does not break the
symmetry. A correct use of dimensional regularization remains a delicate task,
however [BeDa2], and more important, it has no functional counterpart up to
now. In our case, the regularization is not dimensional, and we prefer to return
to the old fashioned analysis of [LZ]. In this point of view the relations (III.5.22)
are deduced from some identities on Schwinger functions. At the formal level one
introduces the generating functional for the theory with gauge condition %(&4)2
(the case o = 1 corresponds to the Feynman gauge):

W(J) =< e~ F?=(a/2)(04)” qot Kl A > (IT1.5.23)

where K = 0 - D is the Faddeev-Popov operator, and the expectation value is
with respect to the formal Lebesgue measure. As in [LZ][IZ], we write G = K~!,
where it is understood that in K and K~! the A field should be replaced by the
corresponding 2 derivation. Then in (I11.5.23) we perform a change of variables
A — A+ Dy with v = K~'w; by (infinitesimal) gauge invariance, there is no
first order dependence in w, which gives the Ward-Takahashi-Slavnov-Taylor-...
equation (omitting group indices):

(aa%uwj(x) + /d4yJ,\(y)D,\(y)K;i> W(J)=0 (IT1.5.24)

We apply an other %, take a divergence and put J = 0 to get an identity on the
two point function:

J . a _beb
< —A (x)a—yuAy(y) >= ;5(:}3 —9) (I11.5.25)

Since in a general gauge with parameter « the propagator is diagonal in su(2)
space and is equal, in Fourier space, to:

S, k% —k, k k, k
2 -1 _ v v v
(k Opuv — (1- a)kuku) =-£ (k2)2 = a(l;{;z)Q

(I11.5.26)
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the first term is killed by —0,,0,, = k, k., hence (II1.5.25) expresses both that there
is no mass renormalization and that the parameter o (the gauge condition) does
not renormalize.

Differentiating two more times and taking divergencs before putting J = 0
leads to a particularly simple identity analogous to (II1.5.25) but involving the
four point function, which (omitting all indices) takes the form:

<OADADAIAST=0 (I1.5.27)

where the truncation corresponds to the subtraction of three terms of the type
< 0A QA >< 0A DA >. Tt is possible to grasp intuitively that relation (II1.5.27)
leads to the first of the magic relations (II1.5.22), namely to ZyZy = Z2 [LZ];
indeed in terms of one particle irreducible components (vertices) the truncated
four point function piece in (II1.5.27) may be pictured as in Fig III.5.4, with the
first term proportional to the four point vertex Z, and the other ones proportional
to Z2Z5 " (because they are made of two three point vertices and one propagator).

Finally one needs to derive from (I11.5.24) a last relation, involving the three
point function (unfortunately slightly more complicated), to obtain the second
magic relation in (I11.5.22), which ensures that the renormalization of the ghost-
ghost-field vertex remains synchronized with the rest. It is ([LZ]):

0 0 1 0
< (%Au(x)a—y,,Au(y)Ak(z)) + aDA7sz18—%

Ay(y) >=0 (IT1.5.28)

The strategy for computing the effective expansion for the well defined theory
(IT1.5.20-21) is to find the rigorous analogue of these identities for the theory with
external (background) field A; and internal field A, — A; = §:¢:1 integrated
with the corresponding gaussian measure. This theory has an ultraviolet cutoff at
scale p and an infrared cutoff at scale i, 1 =p—1,p — 2,...,0.

In each slice there is both a gauge breaking ultraviolet and infrared cutoff.
Therefore the relations (II1.5.25) and (II1.5.27-28) are no longer exact. Order by
order in perturbation the violations can be studied in terms of Feynman diagrams
(like is done at one loop in the previous section). These violations fall into two
classes, the ones linked to the ultraviolet cutoff and the ones linked to the infrared
cutoff. The counterterms C'T in (II1.5.21) have been fitted to cancel the violations
of gauge invariance due to the ultraviolet cutoff at scale p. The violations in the p
slice due to the infrared cutoff have an opposite sign; the corresponding difference
generates the discrete flow for the counterterms CT. All violating effects which
are not included in C'T" correspond to contributions which are convergent from the
point of view of power counting. In this way apart from the flow of the two wave
functions constants corresponding to the A field and ghost fields rescalings, there
is a single flow for the effective coupling constant.

In the end at the zero slice we obtain a renormalized coupling constant A,.q,,.
Like in section II.4 we can invert the relation between A\, and A,.,, reexpress
everything in the theory as a formal power series in A,.,, and let p tend to infinity.
In the case of a theory on a compact torus we can then check the Slavnov Taylor
identities (I11.5.25) and (I11.5.27-28) order by order in the renormalized coupling;
in the limit p — oo all violations disappear because they correspond to operators
which are irrelevant, hence exponentially small in p. This means that at the
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perturbative level we have the right renormalized theory and that gauge invariance
(in the form of Taylor-Slavnov identities) has been recovered in the limit p — oo,
as expected.

Furthermore the analysis of section II.3 leads to uniform bounds of the type
¢™v/n! at order n on the renormalized series in Aoy, (the square root corresponding
to the fact that the quartic couplings have couplings A? rather than X like in ¢*.

This derivation is perhaps too sketchy to be considered a full proof, but we do
not see any basic difficulty in implementing this program in more details. In this
way both the standard result on renormalization of non-abelian gauge theories
and a concrete bound on n-th order contributions can be derived, and what is
probably more important, an effective theory with only useful renormalization
performed can be derived, together with a discrete flow equation for the running
coupling constant. These are however only results in the sense of formal power
series, and for instance although it is clear that the first term in this flow equation
is asymptotically equal to the usual (35 coefficient which has the correct sign for
ultraviolet asymptotic freedom, it is impossible to check this asymptotic freedom
in the sense of a behavior like (IT1.5.12) corresponding to a finite Ay, .

E) The positivity and domination problems

What happens if we try to apply directly the constructive method (a multi-
scale expansion) to the bare theory (II1.5.20-21)7

We meet problems related to a lack of positivity of the functional integrals
both for a direct bound on functional integration and when trying to dominate
low momentum fields produced by the expansion.

The direct lack of positivity can be studied even in a single slice model in
which there is no domination problem. Unfortunately the interaction terms in
(II1.5.20-21) are not all of the form of positive even monomials, and this is the main
difference with a ¢* theory such as the one of section III.3. The interaction term
F3 in particular is not positive, and the most natural positive bound recombines it
with the gaussian piece Fy and the quartic piece Fy to reconstruct F2. Then only
the gauge fixing term doesAs a consequence the one loop A% contribution behaves
as

36 x2 90x6 H4x14
(_ T TR T 16

> log K + finite terms = 2.25log K + finite terms

(IT1.5.19)
where ”"finite terms” now means terms which are uniformly bounded both as p
and K tends to +00. Therefore taking K large enough (depending on the details
of our cutoff, which are responsible for the particular value of the finite terms) we
can always achieve our goal of a positive total A* contribution, hence of a negative
stabilizing counterterm.

In conclusion our starting ansatz for the bare theory is: remain, and it is
obviously not positive definite, hence not sufficient for functional integration. In
small field regions (A << A~!), we can bound the F3 term by the small field
condition. But then we need a non perturbative bound in the regions A4 ~ \~!
which tells us that the functional weight of these regions is small compared to
the (gaussian) weight of the region A ~ 0. Although the A* term shows that the
corresponding functional weight is bounded, we cannot prove solely with this term
that this weight is small.
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This is already in the author’s opinion a serious problem, but presumably one
can, in a single slice model, find some palliative solution, for instance using the fact
that a typical slice cutoff of fixed finite width M enhances the gaussian measure
by a finite factor without enhancing similarly the interaction, so that it should be
possible to prove that for such a fixed width cutoff the normalization of the theory
tends to the gaussian normalization as A — 0. Rather than further discussing
this point we prefer to focus on the domination problem, which is perhaps more
interesting because it is certainly intimately related to the decomposition of the
theory into several scales.

A phase space expansion consists in both spatial cluster expansions and mo-
mentum decoupling expansions. The only important restriction to build these
interpolations is to preserve positivity requirements for the interpolated theory.
The covariance (II1.5.5) in the Feynman gauge is the same as the one of infrared
¢1, hence for the horizontal expansion there is no particular positivity problem
and we can use the tree cluster expansion scheme of the previous sections.

For the vertical ¢ decoupling expansion, we need to interpolate in a way which
preserves positivity and allows “domination” as much as possible. For an even
positive monomial AA2", let us consider the field A to be the sum H + L, where
H and L represent the high and low momentum parts of A. The interpolations
(H +tL)?" + (1 —t2")L?" or t(H + L)*" + (1 — t)L*" are both positive and suited
for domination.

As remarked above, the interaction terms in (II1.5.20-21) (in particular the
F3 term) are not of this form. Our first task is therefore to distinguish, in the
exponential of the interaction, between two types of terms. In the first category
are the ones which we call “dominable”. These are the ones which come from
the decomposition of even positive monomials like above, or which cannot really
couple high and low momenta without violating momentum conservation, or which
contain only anticommuting low momentum fields (ghosts); such fields can indeed
be bounded using the Pauli principle, as in section III.4. In the second category
we put the rest. Arguments based on conservation of momenta work only if there
is a gap of at least one momentum slice. Therefore let us cut the propagator into
the p-th slice, the p—1 slice and the rest with a C§° momentum cutoff. Explicitly
we write

Ay = AP+ AP+ A, (I11.5.29)
il =1 + 77" + 2 (I1L.5.30)
Mo =1"+n""" +1,-2 (I11.5.31)
so that (II1.5.20) becomes:
exp(Jp—1 + 1+ K)dp,(Ap)dvy (i), 1,) (I1.5.32)

where I are the dominable terms, J,_; is the part of the interaction which contains
only low momentum fields, and K is the rest, or “non-dominable” terms. In I we
want to put first all the coupling pieces coming from counterterms, because they
are all dominable by the A% term, which is a positive monomial. So we define:

I, = CT(A,) — CT(A,_y) (I11.5.33)
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We put also in I terms which will be treated with the Pauli principle:
Iy = Mon,[A?, n,] + on°[AP, Mp—1] + 877p—1[Ap_17 n°1} (IIL.5.34)
Then we have terms for which gaussian integration will suffice:

Iy = MOAAJA?, AP+ 0 A A,y ([A7, AP~ + [A770, A7) 49 A AP[AP), 4971}
(I11.5.35)
Finally we have dominable terms coming from the double commutator:

Iy = N{([AP+4°7", AP+ AP ][ 4P AP 4P AP (A0 4[4 4

+([Ap—27 AP + Ap_l] [Ap + Ap_lv AP + Ap_l] - [Ap—Qv Ap—l][Ap—l, Ap_l]
+ permutations of A,_s)
+2[A, 0, A, o)([AP + APT1 AP + APT1] — (AP AP71))} (II1.5.36)

All other terms are non dominable and put into K. Basically K contains the
terms with commutators between high and low momentum fields and the coupling
between two high momentum ghosts and a low momentum field. More explicitly
we have:

K =20 A AP([A, Ay ]+ [Ap 1, A7)+ [4971 A, ] 4[4, 5, 4771))
+AD N APTHAP A o] + [Ap_a, A7)

X ([Ap + AP A ] ([A7 + AP Ay o] + [Ap—a, A7 + AP

—[APTH A, )([APT Ap o] + [Aps, Ap_lD)

FXOP[Ap—2, 0 + 0" ]+ 007" Ap2, 1)) (II1.5.37)

If the reader adds I = Iy + Iy + I3 + I, J,—1 and K algebraically he will not find
all of J,, but all the missing terms couple one single field of slice p to two or three
fields of cutoff p — 2. Hence since the cutoff has compact support these terms are
identically 0 when integrated over the torus A (provided M is large enough).

The non dominable terms in K create a problem. However they have quite a
regular structure. If one consider the low momentum field as a background field,
they come from replacing the ordinary derivatives by covariant derivatives with
respect to this background field. This suggest that one should adapt the gaussian
measure (and in particular the Feynman gauge condition) in the higher slices to
the low momentum background field. We tried to follow this idea without much
success until now. To implement this idea is particularly difficult if, like here, the
gaussian measure itself is used to create the momentum slices, but even if an other
method is used (such as Balaban’s averages) the problem remains difficult.

This resistance of the gauge fixed non abelian functional integral to ordinary
treatments is presumably related to the phenomenon of gauge ambiguity discov-
ered by Gribov, which establishes that not every gauge orbit intersects the gauge
condition once. Gribov discovery can be considered also as expressing a lack of
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positivity and monotonicity of the gauge fixed functional measure. Therefore our
last section is devoted to a brief discussion of this problem. Its analysis points to-
wards abandoning the simple ansatz (II1.5.20-21) for a more sophisticated one in
which additional gauge conditions resolve the Gribov ambiguities. This seems to
imply both surprising effects and very complicated formulas, perhaps untractable
with present day constructive technology.

F) The Gribov problem

Gribov discovered [Gri] that in the Landau gauge there can be different
smooth field configurations which are nevertheless related by a gauge transforma-
tion. A configuration Ay # Ay such that 0,A4,1 = 0, 4,2 = 0 and such that there
exists a gauge transformation g with A; = AJ (A9 being defined as in (II1.5.3))
is called a Gribov copy of A;. The weak Gribov phenomenon is that there are
always some configurations which have copies; it is true even on a compact space
and for configurations with the same topological properties, hence inside a given
topological sector; it is also true for any regular gauge [Sin|, not just the landau
gauge. What we call the strong Gribov phenomenon is when there are Gribov
copies of the 0 configuration, hence pure gauges which satisfy the gauge condition.
This is possible in an infinite space if weak decay at infinity is allowed, as shown in
[Gri], but typically this strong Gribov phenomenon does not occur inside a given
topological sector in a compact space, or under strong decay conditions at infinity
if the space is not compact. For instance we have:

Lemma ITI.5.2 Let A be a pure gauge which is a smooth configuration vanishing
outside some compact domain A. Then if A satisfies the Landau condition, A is
identically zero.

Proof We write:
0=%" / e / dy” Ay - (3 0,A,)(x(y")) (I11.5.38)
~ Ja 0 p

where by definition x#(y") = x* for p # v, ¥(y”) = y* (and the dot is a scalar
product in su(2)). Integrating by parts, if v # u we find:

Sy _/Ad4x /Om dy” 9, A, - Au(x(y”))

BovER

—- 2% [t [ ay o)

BovER
3
=3 Z/Ad‘lx (A2%)(x) (T11.5.39)
w
where in the first equality we used that A is a pure gauge, hence F,, = 0, which

gives 0, A, - A, =0,A, - A,.
If v = p we get instead:

zﬂ: /A d'z /Ox dy* Ay - 0 Au(z(y*)) = %%:/A d*z A2 (x) (III.5.40)
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Combining both equations we obtain — fA Zu Ai = 0, hence A, being smooth
is identically zero.

The strong Gribov phenomenon happens when a change of topological sector
or weak decay at infinity is allowed. In the original paper [Gri] the following
example is considered. Let us distinguish the time coordinate (p = 0) from the
three spatial coordinates, for which we use roman letters like i or j. In the (simpler)
case of a Coulomb gauge (Ap = 0 plus the condition 0;A4; = 0) a pure gauge is
constant in the time coordinate (Fp; = 0 = JpA; = 0). The problem is then
to find a three dimensional smooth configuration A; with 9;A; = 0 which is a

I where ¢ is a smooth function from

pure gauge, hence satisfies to A; = 0;g- g~
IR® to SU(2), the three dimensional sphere in quaternionic space. In the usual

quaternionic coordinates we can write
g =cosa+ Qsina (IT1.5.41)

where (2 is the vector piece of g (hence a unit three dimensional vector combination
of Pauli matrices). Then

Aj = (9;0) Q +sinacosad;Q +sin®a 0;Q A Q (II1.5.42)
The gauge condition in terms of g gives:

0jA; = QAa +sinacosa AQ + 2 cos? a 0;a0;€

in 2
= 9;(000 + SmTaan) (I11.5.43)
In the case of spherical symmetry, i.e. Q) = xy/r and « solely function of r, the
gauge condition becomes the equation:
d’a  2do

1 .
) + R sin2a =0 (I11.5.44)

or using u = 2« and t = logr:

d?u  du

the equation of a damped pendulum. There is a solution, smooth at » = 0, which
tends to u = m or a = 7/2 for t — oo, hence decreases like 1/r. This solution is
therefore a Gribov copy of the origin (strong Gribov phenomenon).

We think that in general there is no strong Gribov phenomenon for smooth
configurations on a smooth compact 4-dimensional space. Let us prove it by hand
in the case of a smooth configuration in the Landau gauge on the (four dimensional)
torus T4. Let us integrate by parts the expression

I— / (0,A,) - (27 tan a + 2% 0, Q) (I11.5.46)
Ty

where the product is a scalar product in quaternionic space. This expression is
zero by the gauge condition. On the other hand, using (I11.5.42) it is equal to

sin? o

I :/ zhag o, — ot( ) S8
T, 2
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+ sin? azrtQ,Q,, + 20, cos asina 2,9, (I11.5.47)

where we adopt the notation f, = 0, f. Integration by parts on a torus does not
give boundary terms. Hence we get (in dimension 4):

I= /T > () + sin® a(9,)?] (I11.5.48)

If I = 0 we must have a constant. If this constant is kx, then ¢ =1 and A = 0. If
it is not equal to k7 we must have () constant, hence g constant and again A = 0.

In constructive theory we are interested into explicit proofs of absence of the
strong Gribov phenomenon such as this one or Lemma III.5.2 because it might
point the way to useful inequalities showing that there is some definite positivity
which lies in the combination of the action F? and the Feynman gauge term
(0,A,)?. Unfortunately the positivity which comes from (I11.5.39-40) or (II1.5.48)
seems too weak when the frequencies considered are much larger than the inverse
size of the volume cutoff. In intuitive terms, the positivity which prevents the
strong Gribov phenomenon is tied to boundary conditions: it is useful for the last
(physical) momentum slices in a phase space analysis but does not seem strong
enough at high momenta.

Although in the constructive study of the ultraviolet limit of non abelian
gauge theories we can avoid the strong Gribov phenomenon just as we avoid the
infrared problem (i.e. by appropriate boundary conditions or compactification),
we cannot avoid the weak Gribov phenomenon. This phenomenon indeed certainly
occurs in the vicinity of null vectors of the Faddeev-Popov operator

K =—-8,D,=—A+),[A,, ] (IT1.5.49)

For A = 0 the Faddeev Popov operator reduces to minus the laplacian and is
positive definite once the 0-momentum mode (hence translation invariance) has
been deleted. But for non zero A and A it is possible to show that rescaling A — kA
one can always have negative eigenvalues of K for k large enough (which correspond
physically to bound states of the ghost system). This fact is intimately linked to
the Gribov phenomenon. The configurations where det K = 0, hence where there
exists null vectors for K are the so-called Gribov horizons. The regions inside the
first Gribov horizon, where K is positive is called the first Gribov region and so
on. Then in [Gri] it is shown that near a Gribov horizon there are typically Gribov
copies, one on each side of the horizon. These copies can be rapidly decreasing
at infinity (or smooth on a compact space) so this “weak Gribov phenomenon”
is completely general and cannot be eliminated like the strong one by an infrared
cutoff or by topological restrictions.

Remark however that in terms of functional integration the weak Gribov
phenomenon is less dangerous than the strong one. Roughly speaking we can think
to the strong Gribov phenomenon as a lack of strict positivity and to the weak
Gribov phenomenon as a lack of monotonicity for the functional measure. The
fact that the Faddeev-Popov operator is not always positive definite at large fields
is nevertheless quite disturbing. Since the determinant of this operator occurs in
the functional measure, we must conclude that the ordinary measure formula for
functional integration is a signed measure.
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It is argued in [Hi] that this signed measure, although derived in an incorrect
way, is nevertheless the correct one; essentially the argument is that as we move
away from the gauge orbit of the origin (which, by absence of the strong Gribov
phenomenon in our case, cuts the gauge condition only once) the Gribov copies of
the weak Gribov phenomenon should by some sort of continuity argument occur
in pairs with equal and opposite values, therefore in pairs which cancel out so
that the ordinary prescrition with the signed determinant is equivalent to a more
correct prescription in which a single point on each gauge orbit is selected, and
the absolute value of the determinant of the operator K is used. In any case even
if this conjecture was true it seems difficult to prove it; in constructive theory
one does not know well how to use signed measures and to check rigorously the
corresponding cancellations, especially if they are not a marginal effect but are
truly crucial for the existence of the limit.

Thinking over to the difficulties in positivity and domination that are met in
the constructive analysis, and presumably their link to the existence of the weak
Gribov phenomenon, it is tempting to conclude that the Gribov phenomenon
should be eliminated at the beginning by use of a better ansatz than (II11.5.20-21).
We will limit ourselves here to a brief discussion of the corresponding approach
of Zwanziger and Dell’Antonio [Zw1-3] [DeZw], in which one tries to define first a
correct configuration space for the functional measure, eliminating Gribov copies
by additional gauge conditions. The simplest condition which comes to mind is
to choose on gauge orbits the points closest to the origin. The simplest norm to
measure distance to the origin is the L? norm on each component:

4] = (/TrA2)1/2 = [/Z(AZ)Z]W (I11.5.50)
Ly @
In [Zw1] it is shown that on a gauge orbit the condition that A is a critical point
for the function A — ||A[| is the Landau gauge condition and the condition that it
is a second order local minimum is the condition that at A the operator Faddeev-
Popov operator K (A) in (II1.5.49) is positive. This remarkable fact is obtained by
a very simple computation. At first order, using integration by parts:

/(AE)2 = /TTA2 — 2/(8#14# <€) (1TL.5.51)

and if we use the Landau gauge condition, the second order term at a critical point
is:

/ (Dc - De + [, Be]) = — / eKe (I11.5.52)

Let us consider the configuration space A obtained by selecting the absolute
minimum of the norm || || is selected on each gauge orbit (plus additional conditions
if there are several absolute minima, which is hopefully not a generic case). We
conclude that A, which should be a correct configuration space for functional
integration, lies entirely inside the first Gribov region, in which the operator K
is positive. In this region the ordinary Fadeev-Popov term is positive, so that we
should have a better constructive starting point.

The condition that the functional integral should be restricted to a domain
inside the first Gribov region has surprising consequences which contradict the
standard wisdom about the high energy behavior of non-abelian gauge theory.
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Indeed in the Landau gauge the operator K reduces to —A + A[A,,0,.] =
—A 4+ L(A). Following [DeZw] we rewrite the condition that K is positive as

L'(4) > —1 (I11.5.53)

where L'(A) = A=Y2L(A)A='/2, But L' is linear in A (as is L). It is therefore (in
the case of SU(2)) the sum of three components L7, each of which is antisymmetric
both with respect to x space variables (because of the derivative in the Fadeev-
Popov coupling) and gauge indices (because of the commutator). The tensor
product of two real antisymmetric operators has a spectrum which is real and
symmetric with respect to the origin, hence when such an operator is larger than
—1 it is also smaller than 1. From this observation (and orthogonality of the eigen
states for different values of j) one concludes that when an operator like L' is
bigger than -1 it is also smaller than 3 [DeZw] (similar bounds of course also exist
in the case of a group larger than SU(2)).

The inequality —1 < L’(A) < 3 on an operator which is linear in A strongly
suggests that A itself should be bounded in terms of a suitable norm. Indeed this
is the case and in [DeZw] such a bound is found (and called an ellipsoidal bound
because the norm is not the standard one (II1.5.50)). It is proved that e.g. on the
torus for SU(2) one has for any A in the first Gribov region

TrA,A
NP =Y T‘]‘giz“(k) < 240 (IIL.5.54)
k

where the sum ), stands for a sum over the frequencies on the lattice dual to the
torus, with the zero frequency deleted.

It is reasonable to select a single point on each gauge orbit to form the correct
configuration space for functional quantization. Such a point can be selected by
adding further restrictions to the condition of second order minimum for the L2
norm (this looks certainly more reasonable than what is done in standard text-
books, i.e. to use simply the Landau gauge condition which selects the whole
class of all stationary points in the orbit, and perhaps to hope for cancellations
like in [Hi]). Therefore it seems very reasonable to consider that the functional
integration for the non-abelian gauge theory can be written as a positive mea-
sure supported on a subdomain of the first Gribov region. But then one finds a
contradiction with the standard perturbative renormalization group high energy
behavior of the theory, at least for gauge variant quantities, because averaging
the pointwise inequality (II1.5.54) on configuration space with a positive measure
leads to a behavior of the Fourier transform of the two point function:

ko

<@q@mﬁm>:§}%ﬁ-w)wwwwm (111.5.55)
with
> % <80/3 (111.5.56)

where in contrast the standard renormalization group analysis [IZ] predicts:

1 g(k)
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It is unclear whether the high energy behavior of gauge invariant quantities is
also modified; this would be even more surprising because the high energy behavior
of objects such as expectation values of Wilson loops computed by Monte-Carlo
simulations seem in good agreement with the standard perturbative asymptotic
freedom.

Much work remains of course to put the work in [DeZw]| on a firm constructive
basis. In particular one should starts with a regularized measure with an ultraviolet
cutoff which when the cutoff is removed converges towards the right measure on the
right configuration space, without Gribov copies. Some first steps in this program
are made in [Zw2-3].

Although it may be too early te derive conclusions, it seems that further in-
teresting and surprising results may await us in this direction. From the physical
point of view we conclude that the Gribov phenomenon appears as a non pertur-
bative effect which seems to prevent the coexistence of too many energy scales in
the non-abelian theory. On the infrared side, this was already the content of the
initial paper of Gribov [Gri], in which it was argued that this effect leads to an
effective infrared cutoff related to confinement. The inequalities (IIL.5.54-56) show
that in the ultraviolet direction as well there is a truncation on frequencies which
is stronger than what one expects to come from standard perturbative asymptotic
freedom.
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